

CÂMPUS FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL CURSO SUPERIOR DE TECNOLOGIA EM ENGENHARIA CIVIL

NAYARA NAZARÉ MARTINS DA COSTA

ANALISE COMPARATIVA DOS MODELOS TRIDIMENSIONAIS DA SUPERFÍCIE ESTIMADA PELO SPT E A OBTIDA APÓS A CRAVAÇÃO DAS ESTACAS EM SOLO SEDIMENTARES.

> Florianópolis - SC 2019

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CÂMPUS FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL CURSO SUPERIOR DE TECNOLOGIA EM ENGENHARIA CIVIL

NAYARA NAZARÉ MARTINS DA COSTA

ANALISE COMPARATIVA DOS MODELOS TRIDIMENSIONAIS DA SUPERFÍCIE ESTIMADA PELO SPT E A OBTIDA APÓS A CRAVAÇÃO DAS ESTACAS EM SOLO SEDIMENTARES

Trabalho de Conclusão de Curso submetido ao Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina como parte dos requisitos para obtenção do título de Engenheira Civil.

Professor Orientador: (Fábio Krueger da Silva. Doutor em Engenharia Civil pela Universidade Federal de Santa Catarina)

FLORIANÓPOLIS - SC JULHO DE 2019

FICHA DE IDENTIFICAÇÃO

COSTA, Nayara Nazaré Martins da. Analise comparativa dos modelos tridimensionais da superfície estimada pelo SPT e a obtida após a cravação das estacas em solo sedimentares / Nayara Nazaré Martins da Costa; Fábio da Silva Krueger - Florianópolis, SC, julho de 2019. Número de páginas p.50: il. color.

Trabalho de Conclusão de Curso (Engenharia Civil) - Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina. Inclui referências.

1. Modelo digital de superfície. 2. IDW. 3. Topo to Raster. 4. Krigagem. 5. Estaca pré-moldada. 6. fundação. Krueger, Fábio da Silva. II. Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina. III. Análise Comparativa entre o modelo digital da superfície resistente estimada pelo SPT e do modelo obtido após cravação das estacas.

Fonte: Elaboração própria.

ANALISE COMPARATIVA DOS MODELOS TRIDIMENSIONAIS DA SUPERFÍCIE ESTIMADA PELO SPT E A OBTIDA APÓS A CRAVAÇÃO DAS ESTACAS EM SOLO SEDIMENTARES

NAYARA NAZARÉ MARTINS DA COSTA

Este trabalho foi julgado adequado para obtenção do Título de Engenheira Civil e aprovado na sua forma final pela banca examinador do curso superior de Engenharia Civil do Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina.

Florianópolis, 02 de julho, 2019.

Banca Examinadora:

Fábio Krueger da Silva Doutor em Engenharia Civil - UFSC

Márcia Maria Machado Steil Mestre em Engenharia Civil - UFSC

Antônio Marinho Machado Júnior Engenheiro Civil – INFRACON Engenharia CREA/MG – 49.314

OBRIGADA!

Tomando como parâmetro o Tratado da Graça de São Tomás de Aquino afirmo aqui que minha gratidão, a cada uma das pessoas aqui citadas, é de terceiro e mais profundo nível e que me sinto obrigada a retribuir-vos de alguma forma ao longo desta vida

Obrigada ao meu professor Fábio Krueger, orientador deste trabalho, pela confiança e pelos ensinamentos como pessoa e profissional ao longo do curso e do desenvolvimento deste trabalho. Durante todo o curso foram inúmeras as discussões que tivemos, por termos opiniões e posicionamentos divergentes sobre vários assuntos, mesmo assim você acreditou em mim e em nosso potencial juntos.

Obrigada à professora Márcia Steil por todos os ensinamentos ministrados nas diferentes disciplinas (fundações e análises), bem como às críticas construtivas durante a elaboração deste trabalho.

Obrigada aos engenheiros Antônio Marinho, Rafael Espada e Paulo Costa, da empresa INFRACON, pela oportunidade de poder "estagiar" com vocês, no sentido mais amplo desta palavra. Vocês serão para sempre parte do que sou e serei como pessoa e profissional, e cada aprendizado adquirido será colocado em prática.

Obrigada ao meu grande amigo Vitor Zimmermann, pessoa sem a qual eu jamais teria concluído o meu TCC, com tamanha beleza ilustrativa. Você é a pessoa mais dedicada, empolgada e obstinada que conheço quando o assunto é imageamento, mapeamento, drones, etc. Maior que suas competências apenas sua benevolência e paciência em ensinar e ajudar os amigos. Obrigada para sempre!

Obrigada a minha família! Aproveito para pedir desculpas pelo tempo suprimido de vocês, minha Mãe, meu pai, meus irmãos, meu marido, sogra, sogro e cunhada ao longo de todos estes anos de formação acadêmica.

Aos meus amigos, aqueles que nasceram ao longo deste curso e aqueles que já vieram comigo de longas datas. Todos vocês foram responsáveis por esta conquista, sem o apoio de vocês eu teria pirado a muito tempo.

Obrigada a Deus, pela vida, pela oportunidade de vivenciar cada uma dessas experiencias e cada uma dessas pessoas envolvidas em minha formação como engenheira civil.

O fim de um começo é tão desafiador quanto o início, mas possui o diferencial de certifica-nos de que vencemos o segmento e estamos prontos para seguirmos o trajeto.

RESUMO

Este trabalho de conclusão de curso constitui-se de uma análise comparativa dos modelos digitais tridimensionais das superfícies resistentes obtidas em três situações e momentos distintos da obra de implantação da SES_ETE Rio Tavares, sendo: superfície gerada pelas cotas de impenetrável do SPT; superfície gerada a partir da cota de atingimento previsto das estacas, admitidas no dimensionamento do projeto de fundações da obra; superfície gerada pelas cotas de assentamento real das estacas após cravação. Os modelos digitais foram gerados utilizando-se de ferramentas para a interpolação dos dados em ambiente GIS, tratados por 3 diferentes interpoladores: IDW, Krigagem e Topo To Raster. O IDW produziu, de maneira geral, modelos de superfícies mais rugosos, em comparação aos outros dois interpoladores empregados. A partir das modelagens digitais criadas foi possível visualizar e afirmar que as informações geotécnicas obtidas a partir do SPT não previram, em sua grande maioria, a real profundidade da camada impenetrável do solo. Sendo que a maioria das estacas cravadas durante a execução da obra ultrapassaram os limites das sondagens realizadas.

Palavras-chave: superfície resistente; estaca pré-moldada; fundação; capacidade de carga, SPT, nega.

ABSTRACT

This final paper compose a comparative analysis from digital tridimensional models of resistant surfaces obtained in three distincted moments of SES_ETE Rio Tavares implantation, being them: first, a generated surface by the impenetrable depth to SPT percussion; second, a generated surface by the precast piles forecasted depth achieved, based on the foundation project, and; third, a generated surface by the depth of the deepseated bored precast piles. The digital models were digitally generated by using GIS interpolation tools under three different analisys methods: IDW (inverse distance weighting), Kringing and Topo to Raster. The IDW method has produced, in general way, rough surface models in comparison to the others two methods employed. From the digital modelling created was possible to visualize and claim the geotecnichal informations obtained from de SPT tests did not predict, in a majority of cases, the real depth of the impenetrable layer of the soil. Being that the majority of the bored piles during the work execution overcomed the limits of the fulfilled SPT polls.

Keywords: resistant surface; precast piles; foundation; bearing capacity, SPT poll, refusal.

LISTA DE FIGURAS

	Figura 1 – esquema geral e equipamentos utilizados durante o ensaio à percussão SPT 14
	Figura 2 – Sequência das etapas do ensaio SPT 15
	Figura 3 – Definição do N _{SPT} 15
	Figura 4 – medida simples da nega 23
	Figura 5 – medida da nega e repique23
	Figura 6 - Estimativa do P Último - Método De Van Der Veen (Magalhaes 2005), 29
	Figura 7 - Método de Van der Veen (1953), modificado por Aoki (1976) 29
	Figura 8 – Camada resistente num sistema global: obra + ambiente
	Figura 9 – Camada resistente num subsistema: elemento de fundação
	Figura 10 – Fluxograma do Sistema de Esgotamento Sanitário ETE_Rio Tavares
	Figura 11 – Layout da ETE_Rio Tavares
	Figura 12 – Situação atual da obra de instalação da ETE_Rio Tavares
	Figura 13 – Localização da ETE_Rio Tavares
	Figura 14 – Fluxo de trabalho 41
os dados do	Figura 15 – Exemplo do resultado do cruzamento dos dados da modelagem da superfície com estaqueamento realizado
ortofotomosa	Figura 16 – Plano para obtenção da Nuvem de Pontos Densa e construção do aico e Modelo Digital de Superfície (MDS)43
destaque en	Figura 17 – Croqui da ETE Rio Tavares, com a locação dos furos de sondagem SPT válidos, n amarelo e furos de Sondagem Mista, destaque em vermelho
	Figura 18 – MDE da superfície sondada por SPT, gerado utilizando o interpolador IDW 8
	Figura 19 – MDE da superfície sondada por SPT, gerado utilizando o interpolador Krigagem.
Raster	Figura 20 – MDE da superfície sondada por SPT, gerado utilizando o interpolador Topo to
	Figura 21 – MDE gerado utilizando o interpolador IDW8
	Figura 22 – MDE gerado utilizando o interpolador Krigagem 8
	Figura 23 – MDE gerado utilizando o interpolador Topo to Raster
vista de Lest	Figura 24 – MDE gerado utilizando o interpolador IDW. A imagem A = vista de Sudeste, B = $(x - y)$
uo L03	$\mathbf{U}_{\mathbf{U}} = \mathbf{U}_{\mathbf{U}}$

Figura 28 – Sobreposição da modelagem das estacas cravadas sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem. 10

Figura 29 – Sobreposição da modelagem das estacas cravadas, sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem. 11

Figura 30 – Sobreposição da modelagem das estacas cravadas sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem. 12

Figura 31 – Sobreposição da modelagem das estacas cravadas, sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem. 13

LISTA DE ABREVIATURAS E SIGLAS

- CQD Casa de Química e Desidratação do Lodo Mecânico
- DN_Norte Desnitrificador Norte
- DN_Sul Desnitrificador Sul
- DUV Desinfecção por irradiação Ultravioleta
- EES Estação Elevatória de Serviço
- ELS Estado-limite de Serviço
- ELU Estado-limite Último
- ETE Estação de Tratamento de Esgoto
- IDW Inverse Distance Weighted Ponderação do Inverso da Distância
- PCE Prova de Carga Estática
- PPQQ Depósito de Produtos Químicos
- SES Sistema de Esgotamento Sanitário
- SPT Standard Penetration Test
- SUB Subestação
- TPL Tanque Pulmão
- TPR Tratamento Preliminar
- TRTWN Tricktow Norte
- TRTWS Tricktow Sul

1	INTRO	DUÇÃO	8
	1.1	DEFINIÇÃO DO PROBLEMA	8
	1.2	JUSTIFICATIVA	9
	1.3	HIPÓTESE	9
	1.4	OBJETIVOS	9
	1.4.1	Objetivo geral	10
	1.4.2	Objetivos específicos	
2	REVIS	ÃO DA LITERATURA E FUNDAMENTAÇÃO TEÓRICA	11
	2.1	INVESTIGAÇÕES GEOTÉCNICAS	11
	2.1.1	Importância das investigações	12
	2.1.2	Ensaios de campo	13
		2.1.2.1 Standard Penetration Test - SPT	13
	2.2	Fundações profundas	16
	2.2.1	Definição	17
	2.2.2	Capacidade de carga	
	2.2.3	Estacas cravadas	19
		2.2.3.1 Cravação	20
		2.2.3.2 Nega e repique	22
	2.2.4	Controle de capacidade	23
	2.2.5	Diagrama de cravação	24
	2.2.6	Prova de carga estática	25
	2.2.7	Superfície resistente	30
	2.3	Modelagem Digital Tridimensional	31
	2.3.1	Geoestatística e modelagem por método de interpolação	
		2.3.1.1 IDW (Inverse Distance Weighted – Ponderação do Inverso da Distância)	33
		2.3.1.2 Topo to Raster	33
		2.3.1.3 Krigagem e Semivariograma	
	2.4	CARACTERIZAÇÃO DA OBRA E DO AMBIENTE	
	2.4.1	O Sistema de Esgotamento Sanitário ETE Rio Tavares	34
	2.4.2	Localização e caracterização do terreno	
		2.4.2.1 Características da Geologia e da Pedologia da area	
3	METO	DOLOGIA	40
	3.1	ELABORAÇÃO DE PLANILHAS COM INFORMAÇÕES ESTRAÍDAS DOS LAUDOS DE SONDAGENS E DOS BOLETINS DE CRA	٩VAÇÃO DAS
	ESTACAS		41
	3.2	MODELAGEM DIGITAL TRIDIMENSIONAL	42

SUMÁRIO

	RESUL	TADOS	15
	4.1	MODELAGEM DA SUPERFÍCIE RESISTENTE ESTIMADA A PARTIR DA COTA DE IMPENETRÁVEL DADA PELO SPT	18
	4.1.1	Interpolador IDW	18
	4.1.2	Interpolador Krigagem	8
	4.1.3	Interpolador Topo To Raster	8
	4.2	MODELAGEM DA SUPERFÍCIE DE ESTAQUEMENTO PROJETADO	8
	4.2.1	Interpolador IDW	9
	4.2.2	Interpolador Krigagem	8
	4.2.3	Interpolador Topo To Raster	8
	4.3	MODELAGEM DA SUPERFÍCIE RESISTENTE REAL, OBTIDA APÓS CRAVAÇÃO DAS ESTACAS	8
	4.3.1	Interpolador IDW	8
	4.3.2	Interpolador Krigagem	8
	4.3.3	Interpolador Topo To Raster	8
	4.4	Análise da situação	8
	4.4.1	Comparativo entre a modelagens: Sondagem X Projeto X Executado	10
5	CONC	.USÃO1	۱5
6	DECED	ÊNCIAS	0
0	NEFER		10
7	APÊNI	DICES	25
	7.1	APÊNDICE 3 - ÎNFORMAÇÕES PARA CRIAÇÃO DO MDE, A PARTIR DA SONDAGEM EXECUTADA	25
	7.2	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada	۱.
	7.2	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA	25
8	7.2 ANEX0	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada	4. 25 88
8	7.2 ANEX0 8.1	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 2 2 2 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25 88 88
8	7.2 ANEXO 8.1 8.1.1	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 25 38 38 38
8	7.2 ANEX(8.1 8.1.1 8.1.2	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2	 25 38 38 38 38 39
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 2 OS PERFIL DE SONDAGEM À PERCUSSÃO – SPT. Furo de Sondagem Percussiva – SPT - SP1.1. Furo de Sondagem Percussiva – SPT - SP1.1A. Furo de Sondagem Percussiva – SPT - SP1.2	 3.25 3.8 3.8 3.8 3.9 4.0
8	7.2 ANEX(8.1 8.1.1 8.1.2 8.1.3 8.1.4	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 2 3 3 3 4 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 6 6	 A. 25 38 38 38 39 40 41
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 205 PERFIL DE SONDAGEM À PERCUSSÃO – SPT. 31 Furo de Sondagem Percussiva – SPT - SP1.1 32 Furo de Sondagem Percussiva – SPT - SP1.1A. 33 Furo de Sondagem Percussiva – SPT - SP1.1A. 34 Furo de Sondagem Percussiva – SPT - SP1.2 4 Furo de Sondagem Percussiva – SPT - SP1.3 4 Furo de Sondagem Percussiva – SPT - SP1.3	 3.25 3.8 3.8 3.8 3.8 3.9 4.0 4.1 4.2
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 205 205 216 217 217 218 219 229 220 231 232 233 233 233 234 234 235 235 234 235 235 235 235 235 235 233 2333 2334 2335 2336 2337 2336 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337 2337	 3.25 3.8 3.8 3.8 3.8 3.9 4.0 4.1 4.2 4.3
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 20 21 22 23 24 25 25 26 27 28 29 29 29 20 20 21 22 23 24 25 25 26 26 27 28 29 29 20 20 21 22 23 24 25 26 27 27 28 29 29 20 20 20 21 22 23 24 24 25 26 26	 3.25 3.8 3.8
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8	Apêndice 2 - Informações para criação dos MDEs, a partir da fundação projetada e da fundação executada 20 21 22 23 24 25 25 26 27 28 29 29 29 20 20 21 22 23 24 25 25 26 26 27 28 29 29 20 20 21 22 23 24 25 25 26 27 27 28 29 29 20 20 20 21 22 23 24 25 26 27	 3.8 3.8 3.8 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5
8	7.2 ANEX(8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 22 23 24 25 26 27 27 28 29 29 29 20 20 21 22 23 24 25 25 26 27 28 29 29 20 20 21 22 23 24 25 26 27 27 28 29 20 20 21 22 23 24 25 26 27 27 28 29 29 29 20	
8	7.2 ANEX 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 23 23 PERFIL DE SONDAGEM À PERCUSSÃO – SPT. 5 Furo de Sondagem Percussiva – SPT - SP1.1 5 Furo de Sondagem Percussiva – SPT - SP1.1A. 5 Furo de Sondagem Percussiva – SPT - SP1.2 Furo de Sondagem Percussiva – SPT - SP1.3 Furo de Sondagem Percussiva – SPT - SP1.4 Furo de Sondagem Percussiva – SPT - SP2.1 Furo de Sondagem Percussiva – SPT - SP2.2 Furo de Sondagem Percussiva – SPT - SP2.3	 3.8 3.8 3.8 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.12	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 25 26 27 28 29 29 20 20 21 22 23 24 25 26 26 27 28 29 29 20 20 20 21 22 23 24 25 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26	A. 25 38 38 39 40 41 42 43 44 45 46 47 48
8	7.2 ANEXO 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.12 8.1.12	APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA 25 26 27 28 29 29 29 20 20 21 22 23 24 25 25 26 26 27 28 29 29 20 20 21 22 23 24 25 25 26 27 28 29 20 20 21 22 23 24 24 24 25 26 27 28 29 29 20 20 21 22	A. 25 38 38 38 39 40 41 42 43 44 45 46 47 48 49

8.1.1	4	Furo de Sondagem Percussiva – SPT - SP2.7	51
8.1.1	5	Furo de Sondagem Percussiva – SPT - SP2.8	52
8.1.1	6	Furo de Sondagem Percussiva – SPT - SP2.9	53
8.1.1	7	Furo de Sondagem Percussiva – SPT - SP2.10	54
8.1.1	8	Furo de Sondagem Percussiva – SPT - SP2.11	55
8.1.1	9	Furo de Sondagem Mista – SM01	56
8.1.2	0	Furo de Sondagem Mista – SM02	57
8.1.2	1	Furo de Sondagem Mista – SM03	58
8.2	Pr	OJETOS DE FUNDAÇÃO	59
8.3	Во	LETIM DE CRAVAÇÃO	60

1 INTRODUÇÃO

Este trabalho consiste de uma análise do modelo digital de superfície da camada resistente do subsolo, no terreno onde está sendo implantada a Estação de Tratamento de Esgoto SES-ETE Rio Tavares localizada no bairro Rio Tavares, centro-sul da Ilha de Florianópolis.

Tal análise visa abarcar as possíveis interpretações quanto ao posicionamento da referida camada resistente, com base em dados de diferentes etapas da obra.

Assim tem-se o primeiro modelo de superfície da camada resistente do solo obtido a partir das cotas do impenetrável do SPT, ainda na fase de estudos geológicos para a obra citada. Foram executadas, para esta obra 22 furos para sondagens SPT, sendo 18 ensaios válidos, dos quais foram extraídas as cotas do impenetrável à percussão, para modelagem de uma das superfícies resistentes estimadas e analisadas.

Um segundo modelo de superfície da camada resistente é advindo dos dados de dimensionamento de capacidade de carga dos elementos de fundações, durante a fase de concepção do projeto geotécnico da obra.

Gerou-se ainda um modelo de superfície da camada resistente obtido utilizando-se dos boletins de cravação das estacas, durante a fase de implantação da obra. Foram executados 767 elementos de fundação, totalizando 14.118,65 metros de estacas pré-moldadas cravadas num terreno com presença de solos moles, em camadas que variam de 5m a 15m de espessura.

Para o controle da qualidade do estaqueamento foram realizados 24 ensaios de prova de carga estática e em todas as estacas cravadas foram realizados controle individualizado, por meio da obtenção da nega e do repique ao final da cravação.

1.1 DEFINIÇÃO DO PROBLEMA

O problema deste trabalho está subdividido em dois questionamentos:

- As informações geotécnicas obtidas a partir do impenetrável do SPT previram um modelo de terreno compatível com a superfície gerada a partir do impenetrável obtido após cravação das estacas?
- A superfície de assentamento das estacas, prevista pelo projeto geotécnico da obra foi confirmada após execução da obra?

1.2 JUSTIFICATIVA

Este trabalho se justifica pela possibilidade de ilustrar por meio de uma modelagem tridimensional um "sistema" de fundação, em diferentes fases. Essa forma de exposição tende a facilitar a compreensão do espectador.

A ilustração tridimensional da situação tende a impactar diretamente ao observador podendo, portanto, servir como um alerta em situações semelhantes, onde o comprimento total de estacas cravadas na obra superou em mais de 35% o previsto em projeto, o que sugere investimentos de tempo e dinheiro maiores do que o previsto.

Foram 3.705,65 metros de estacas cravados a mais do que previa o projeto, ou seja, foram aproximadamente 309 estacas pré-moldadas de concreto (dimensões 0,30x0,30x12 metros) utilizadas além daquelas previstas, para esta obra.

1.3 HIPÓTESE

O modelo de superfície construído a partir das cotas do impenetrável definidas pelo SPT é compatível com a superfície gerada a partir do impenetrável alcançado com nega ao final da cravação das estacas, e que ainda, o dimensionamento do comprimento projetado das estacas está ajustado com ambos os modelos.

1.4 OBJETIVOS

O objetivo geral deste trabalho foi descrito de forma ampla no subitem a seguir e, na sequência, para uma melhor compreensão evolutiva do estudo o mesmo foi seccionado em objetivos específicos.

1.4.1 Objetivo geral

Avaliar, visualmente, a similaridade entre os seguintes modelos de superfícies:

- modelo gerado a partir da cota do impenetrável à percussão, dada pelo SPT;
- 2. modelo gerado a partir dos dados de projeto geotécnico da obra e;
- modelo gerado a partir dos dados extraídos dos boletins de cravação obtidos durante a execução da obra.

1.4.2 Objetivos específicos

Os objetivos específicos deste trabalho são:

- Obter dados do subsolo, por meio do levantamento dos dados das análises de SPT;
- Elaborar uma modelagem para a superfície dada pelo SPT como superfície;
- Avaliar as condições geológicas e pedológicas da área, por meio de revisão de literatura;
- Caracterizar a obra em estudo e o ambiente onde a mesma está inserida, para melhor compreensão e localização dos fatos;
- Elaborar uma modelagem para a superfície prevista em projeto, para o assentamento das estacas;
- Avaliar os boletins de cravação das estacas;
- Analisar os resultados dos ensaios de prova de carga realizados, com o objetivo de aferir o estaqueamento executado;
- Elaborar uma modelagem da superfície de assentamento das estacas cravadas.
- Sobrepor as modelagens elaboradas para uma análise visual de similaridade.

2 REVISÃO DA LITERATURA E FUNDAMENTAÇÃO TEÓRICA

Este capítulo é composto por três subcapítulos (Investigações geotécnicas, Fundações profundas, Modelagem Digital Tridimensional e Caracterização da obra e do ambiente), cada um destes se subdivide em temas específicos, para melhor abordagem dos assuntos.

O entendimento de forma conjunta dos temas abordados permite a compreensão do problema proposto por este trabalho.

2.1 INVESTIGAÇÕES GEOTÉCNICAS

As investigações geotécnicas podem ser definidas como métodos para o conhecimento das condições de um subsolo em um determinado local, sob determinadas condições. De maneira simplificada as investigações geotécnicas podem ser resumidas da seguinte maneira:

- 1. investigações geotécnicas de campo:
 - ✓ levantamento de superfície,
 - ✓ ensaios (poços, sondagens a trado, o "Standard Penetration Test"-SPT, o "Standard Penetration Test" complementado com medidas de torque - SPT-T, o ensaio de penetração de cone – CPT, o ensaio de penetração do cone com medida das pressões neutras, ou piezocone
 - CPT-U, o ensaio de palheta, os pressiômetros, o dilatômetro, os ensaios de carregamento de placa – provas de carga, os ensaios geofísicos, etc.
 - ✓ coleta de amostras.
- 2. investigação geotécnica de Laboratório
 - ✓ ensaios de laboratório.

Segundo Silva (2015) as investigações de campo garantem a rapidez na execução e determinação dos resultados, alto potencial de repetibilidade e avaliação de uma grande área com baixo custo, em contrapartida, com o avanço tecnológico as investigações de laboratório apresentam maior aplicabilidade das teorias existentes e maior confiabilidade dos resultados.

No Brasil, a investigação dos solos para projetos de fundações de estruturas é usualmente feita mediante investigação de campo, por sondagens que permitem conhecer a variação da resistência do solo com a profundidade através de descrições e índices das diversas camadas. Normalmente, as investigações geotécnicas envolvem sondagens tipo SPT e, eventualmente, sondagens rotativas (CINTRA; *et al*, 2013).

2.1.1 Importância das investigações

Segundo Marangon (2018) as investigações geotécnicas podem refletir nos fatores de segurança intrínsecos das obras de engenharia. Portanto, em cada projeto de fundação deve-se proceder, previamente, uma análise do maciço de solos, a chamada investigação geotécnica, com o objetivo de descobrir, caso a caso, as condições que a natureza oferece (CINTRA; *et al*, 2013). Ainda de acordo com os mesmos autores, a especificidade de cada análise ocorre devido ao solo ser um material natural, portanto muito variável quanto à composição e ao comportamento sob o carregamento oferecido pela estaca e pela superestrutura a ser apoiada sobre o sistema de fundação.

Na engenharia de fundação os depósitos de solos naturais constituem o elemento resistente, que suporta a fundação e a superestrutura acima dela. Na maioria das vezes estes depósitos de solos são extremamente irregulares, com variedades infinitas de possíveis combinações de fatores determinantes da escolha e execução das fundações (TSCHEBOTARIOFF, 1987).

A irregularidade existente nos depósitos de solo exige muito cuidado do projetista, com a tarefa de seleção do tipo de fundação, bem como com a correta descrição do elemento de fundação. Portanto recomenda-se que este seja amplamente amparado pelas investigações geotécnicas e demais informações relevantes aos projetos (VELLOSO; LOPES, 2011).

As informações mínimas a serem verificadas para definição de um projeto de fundações, segundo Velloso; Lopes (1998) são: a topografia da área, os dados geológicos-geotécnicos, os dados da estrutura a construir e os dados sobre construções vizinhas.

2.1.2 Ensaios de campo

Segundo Silva (2015), os ensaios de campo são essenciais nas classificações, definições das camadas do solo, determinação de nível de água, estimativa de propriedades geotécnicas no estado natural do solo e, em alguns casos, coleta de material para análise.

Conforme citado anteriormente, os ensaios de geotécnicos de campo podem ser subdivididos em diversos. Neste capítulo será dada atenção especial ao SPT, por ser o ensaio mais utilizado no Brasil e por ser o utilizada nesta obra em estudo.

2.1.2.1 Standard Penetration Test - SPT

O Standard Penetration Test - SPT é uma econômica ferramenta de investigação geotécnica, que oferece valores de resistência mecânica conjugada a uma sondagem de simples reconhecimento, comumente utilizada no Brasil e em boa parte do território mundial (SCHNAID; ODEBRECHT, 2012).

O método de ensaio SPT no Brasil é normalizado pela NBR 6484:2001, a qual prescreve o método de execução de sondagem de simples reconhecimento do subsolo e medidas do índice de resistência à penetração, para fins da Engenharia Civil, cujas finalidades são: a determinação dos tipos de solo em suas respectivas profundidades de ocorrência, a posição do nível d'água e os índices de resistência à penetração a cada metro (ABNT, 2001).

Segundo Vieira (2015) pode-se dizer que, numa análise generalista, o ensaio SPT é um ensaio relativamente fácil de ser executado.

Embora seja um ensaio relativamente simples e normatizado pela ABNT, segundo Schnaid e Odebrecht (2012) os resultados deste ensaio podem ser influenciados por diversos fatores, sendo: método de perfuração, o fluido estabilizante do furo, o diâmetro do furo, o mecanismo de levantamento e liberação de queda do martelo, a rigidez das hastes, a geometria do amostrador e o método de cravação. Somam-se a isto tudo, desvios dos procedimentos normatizados, fraudes, erros operacionais, vícios executivos e outros.

A execução do ensaio SPT inicia-se com a cravação do trado até a profundidade até 1,00 m. A sequência será padronizada de metro a metro sendo: a

penetração do amostrador nos primeiros 45 cm e o avanço da perfuração pelos próximos 55 cm. O amostrador padrão, deve ser cravado por intermédio de pancadas produzidas por um martelo de peso padronizado de 65 kg, em queda livre de uma altura de 75 cm (ABNT, 2001).

Ao atingir o nível de água, a perfuração deve prosseguir utilizando-se de um sistema de circulação de água caracterizado por um conjunto de hastes rosqueáveis, que conta com uma peça com a parte inferior cortante, denominada Trépano, cuja função é desagregar o solo (CINTRA; *et al*, 2013). A Figura 1 ilustra o esquema geral de montagem do ensaio SPT e das peças utilizadas durante o procedimento.

Fonte: HIGASHI (2016)¹, apud THIESEN (2016).

De maneira sistemática, tem-se como resposta após a sondagem SPT a quantidade de golpes necessários para cravar 45 cm do amostrador, estagiados em leituras de 3 camadas de 15 cm, sendo nomeados de 1ª, 2ª e 3ª penetrações (perfuração, amostragem e ensaio penetrométrico). A análise final dos resultados deve-se basear na 2ª e 3ª coluna, ou seja, na soma dos golpes para penetração do amostrador nos últimos 30 cm (ABNT, 2001). Esta soma é, normalmente, apresentada de forma direta nos relatórios de sondagens e constituem o chamado NSPT, sendo este o dado a ser utilizado para cálculos ou correlações matemáticas. A Figura 2 e a Figura 3 apresentadas

¹ HIGASHI, R. A. R. Notas de aulas. UFSC - Universidade Federal de Santa Catarina. Curso de graduação em Engenharia Civil. Florianópolis, 2016. 161p.

a seguir ilustram a sequência das etapas do ensaio SPT e a definição do NSPT, respectivamente.

Figura 2 – Sequência das etapas do

Figura 3 – Definição do N_{SPT}.

Fonte: (CINTRA; et al, 2013).

Fonte: (CINTRA; et al, 2013).

A quantidade de furos de sondagem SPT deverá atender uma quantidade mínima preestabelecida pela NBR 8036 ou a necessidade do projetista para a situação. As profundidades dos furos de sondagem SPT deverão prever o mínimo de 15m abaixo do nível do terreno natural. Ainda, no mínimo, 33% dos furos de cada unidade deverão atingir o impenetrável, conforme a NBR 6484 ou o limite máximo de 25m (ABNT, 2001).

De acordo com a NBR 6484:2001 o ensaio SPT é finalizado quando ocorre uma das seguintes situações: em 3 sucessivos se obtiver 30 golpes para a penetração dos 15 cm iniciais do amostrador padrão; em 4 m sucessivos, se obtiver 50 golpes para penetração dos 30 cm iniciais do amostrador padrão; em 5 m sucessivos, se obtiver 50 golpes para a penetração dos 45 cm do amostrador padrão (ABNT, 2001).

O SPT devido à sua simplicidade, robustez e baixo custo operacional, segundo Cavalcante (2002), continua sendo um ensaio de referência e de rotina na prática da engenharia de fundações. Há indicações de que o ensaio é usado como base em mais de 90% dos projetos de fundações no Estados Unidos, Japão e Brasil. No entanto, como qualquer outro tipo de ensaio de campo ou mesmo de laboratório, o SPT sofre a influência de diversos fatores e apresenta falhas.

Dentre estas possíveis falhas, Cavalcante (2002) aponta que a substituição do trado manual pela perfuração com circulação de água acima do lençol freático poderá

induzir a erros significativos nos resultados, principalmente em areias finas e siltes. Isso porque esse processo provoca uma excessiva desagregação do solo e uma consequente destruição da sua estrutura natural, aliviando o estado de tensões geostática tanto vertical quanto horizontal.

Outras falhas importantes foram relatadas por MOHR (1966) e se referem ao controle da pressão e da vazão da bomba. Se a pressão é baixa e a vazão é pequena, a lavagem do furo será insuficiente. Porém, ocorrendo o contrário, o efeito da pressão e da vazão da bomba na perfuração poderá causar significativas perturbações tanto nas paredes do furo quanto na cota de assentamento do amostrador.

Outra consideração importante feita por Cavalcante (2002) é quanto a perfuração através da circulação d'água (lavagem), quando se atinge a cota de amostragem, a limpeza do furo requer algum tempo para que todos os resíduos sólidos decorrentes do processo sejam removidos (NBR 6484,2001). Quando o operador desconsidera esse fato ou a capacidade de recalque da bomba é insuficiente para elevar todos os resíduos sólidos à superfície a partir de uma determinada profundidade, pode ocorrer obstrução dos orifícios e válvulas existentes na cabeça do amostrador, aumentando consequentemente a resistência à penetração.

Cavalcante (2002) menciona ainda inúmeras outras possíveis falhas ao longo de sua investigação teórico-experimental sobre o SPT. Tais falhas estão relacionadas a fatores como: Desequilíbrio hidrostático; Tipo de martelo; Altura de queda do martelo; Frequência dos golpes; Tipo, idade e diâmetro da corda; Amostrador com imperfeições; Desaceleração do martelo por conta de atrito; Comprimento, tipo e estado de conservação das hastes; Uso ou supressão do coxim de madeira; Excentricidade do martelo em relação às hastes; Erros de contagem, medidas e anotações; Alívio de tensões do solo devido à perfuração; Presença de pedregulhos e seixos; Intervalo de penetração; Peso da cabeça de bater e Condições do solo.

2.2 FUNDAÇÕES PROFUNDAS

Uma fundação, corretamente projetada, deve suportar as cargas que atuam sobre ela e distribuí-las de maneira satisfatória, não produzindo tensões excessivas no solo a qualquer profundidade sob a fundação (TSCHEBOTARIOFF, 1987).

Quando as camadas superficiais do solo são muito fracas, segundo Tschebotarioff (1987) é necessário aprofundar a fundação até que se encontre camadas resistentes, capazes de suportarem as tensões geradas.

Conforme Rebello (2011), a fundação profunda é adotada quando a fundação direta não for aconselhada, quando o número de golpes da sondagem SPT maior ou igual a oito estiver a profundidades superiores a dois metros.

2.2.1 Definição

A definição quanto a necessidade de execução de uma fundação profunda surge, portanto, quando as soluções de fundação superficial, em geral mais simples e econômicas, não puderem ser aplicadas devido à maior profundidade da camada de solo compatível com a carga da edificação (REBELLO, 2008).

De acordo com a NBR 6122 fundações profundas são:

Elemento de fundação que transmite a carga ao terreno pela base (resistência de ponta), por sua superfície lateral (resistência de fuste) ou por uma combinação das duas, e que está assente em profundidade superior ao dobro de sua menor dimensão em planta, e no mínimo 3 m, salvo justificativa. Neste tipo de fundação incluem-se as estacas, os tubulões e os caixões (ABNT, 2010).

Dentre os três tipos de fundações profundas citadas anteriormente, a estaca é o elemento de maior diversidade e utilização no Brasil. De acordo com a NBR 6122 à estaca pode ser definida como:

Elemento de fundação profunda executado inteiramente por equipamentos ou ferramentas, sem que, em qualquer fase de sua execução, haja descida de operário. Os materiais empregados podem ser: madeira, aço, concreto pré-moldado, concreto moldado in situ ou mistos (ABNT, 2010).

Além do critério material, as estacas podem ser classificadas segundo Velloso e Lopes (2010), quanto ao tipo de deslocamento que provocam no solo ao serem executadas, sendo: de deslocamento ou, de substituição. É exemplo de processo executivo que provoca o deslocamento do solo o sistema de cravação, enquanto que as estacas escavadas promovem a substituição do solo.

Terzaghi e Peck (1967) utilizaram o critério tipo de solo, para classificar os elementos de fundação por estaca em três categorias, sendo elas: estacas de atrito em

solos granulares muito permeável; estacas de atrito em solos finos de baixa permeabilidade e estacas de ponta sobre camada de solo resistente.

2.2.2 Capacidade de carga

A capacidade de carga de um elemento de fundação por estaca é a força correspondente a máxima resistência que o sistema (solo/estaca) pode oferecer antes de romper ou do valor representativo da condição de ruptura do sistema, em termos geotécnicos (CINTRA; AOKI, 2018).

Dentre os termos e expressões utilizadas na literatura, capacidade de carga tem certa predominância entre os autores das áreas da geotécnica. Aparecem também diversos símbolos para representação desta força, como: P_R, PR, P_u, Q_u, P_{ult}, Q_{ult}, etc. Neste capítulo, seguindo o padrão estabelecido por Cintra e Aoki (2018) será empregado o símbolo R maiúsculo, para representar Capacidade de Carga como unidade de força e r minúsculo para indicar unidades de tensão (r_L e r_P).

A capacidade de carga é explicada, do ponto de vista físico, por Cintra e Aoki (2018) como o desenvolvimento de tensões resistentes ao longo do fuste da estaca e junto à sua ponta, o que permite separar a resistência em duas parcelas (em unidades de força), sendo: a resistência lateral (R_L) e a resistência de ponta (R_P). Matematicamente a capacidade de carga pode ser expressa como:

$$R = R_L + R_P$$

Onde:

R – capacidade de carga do elemento de fundação (força); R_L – resistencia lateral (força); R_P – resistencia de ponta (força).

A parcela da resistência de ponta (R_P) é obtida com a multiplicação da tensão resistente na ponta pela área da seção transversal da ponta ou base da estaca.

$$R_P = r_p * A_P$$

Onde:

 r_p - resistencia de ponta (tensão) A_P - seção transversal da ponta ou base da estaca. (1)

(2)

Já a parcela da resistência lateral (R_L) ou atrito lateral é obtida por meio da multiplicação do perímetro da estaca pelo somatório das tensões resistentes ao longa das diferentes camadas de solo.

$$R_L = U \sum (r_L * \Delta_L) \tag{3}$$

Onde:

U - perímetro do fuste da estaca; $r_L - resistencia lateral (tensão);$ $\Delta_L - espessura da camada do solo.$

A adição dos valores obtidos com o cálculo das duas parcelas resistentes, finalmente, mensura a capacidade de carga do elemento de fundação por estaca.

$$R = U\sum (r_L * \Delta_L) + r_p * A_P$$

Destaca-se, portanto, que a capacidade de carga ao final é força dependente das variáveis geométricas da estaca (U, Δ_L e A_P) e das variáveis geotécnicas (r_L e r_P).

2.2.3 Estacas cravadas

As inúmeras opções de sistemas de fundação por estacas possibilitam melhores ajustes com as demandas técnicas, ambiental e económica. Em solos moles, como no presente caso, é histórica a utilização de estacas cravadas. Straub (1964)², apud Velloso e Lopes (2010) relata alguns casos de utilização de estacas cravadas em ambientes com solos moles pelos romanos, conforme descreve Vitruvius (*De arquitecture libri decem*):

Se o terreno firme não puder ser encontrado e o terreno for pantanosos ou fofo, o local deve ser escavado, limpo e estacas de amiedo, oliveira ou carvalho, previamente chamuscadas devem ser cravadas com uma máquina (...).

Estacas cravadas em argilas moles, segundo Velloso e Lopes (2010) podem causar, num primeiro momento, um deslocamento do solo praticamente igual ao volume da estaca, mas com o passar do tempo haverá um ganho de resistência lateral, ligado à migração da água dos poros causada pelo excesso de poropressão gerado pela cravação da estaca.

(4)

² STRAUB, H. A history of Civil Engineering. Cambridge: The M.I.T. Press, 1964.

A estaca pré-moldada de concreto oferece a vantagem de ser resistente aos agentes agressivos e por suportarem muito bem as alternâncias de secagem e umedecimento, além de poderem absorver água do terreno ocasionando a aceleração do processo de dissipação dos excessos de poropressão. (VELLOSO; LOPES, 2011).

Segundo Alonso (1998) as estacas pré-moldadas podem ser constituídas por um dos elementos estruturais: madeira, aço, concreto armado ou concreto protendido, ou ainda pela combinação de dois desses elementos, sendo denominadas neste caso, estacas mistas.

De acordo com Medrano (2014), as estacas cravadas podem ser classificadas ainda pelo processo de cravação: de percussão (utilização de martelos de queda livre, a diesel ou hidráulico), por prensagem (uso de macacos hidráulicos) ou vibração (utilizando-se de martelos de vibro compressão).

As estacas pré-moldadas podem ser emendadas, quando necessário, utilizando-se de procedimentos que resistam às cargas durante o procedimento de cravação e que sejam capazes de impedir a separação e o desalinhamento dos elementos ementados (ALONSO, 1998).

De acordo com a NBR 6122/2010 as emendas devem ser através de anéis soldados ou outros dispositivos que permitam a transferência de esforços e garantam a axialidade dos elementos emendados.

É permitida apenas uma única emenda por luva de encaixe e na mesma não pode haver tração ou flexão tanto na gravação quanto na utilização da estaca. As luvas de encaixe devem ter altura de duas vezes o diâmetro (D x 2) e no mínimo 50 cm, a espessura da chapa deve ser maior que D/60 e no mínimo 5 mm, deve possuir a mesma geometria que dos segmentos de estacas a serem emendados e nunca apresentarem folgas maiores que 10 mm (ABNT, 2010).

2.2.3.1 Cravação

De acordo com a NBR6122/2010 a cravação das estacas pré-moldadas de concreto pode ser feita por percussão, prensagem ou vibração. A escolha do equipamento deve ser feita de acordo com o tipo, dimensão da estaca, características do solo, condições de vizinhança, características do projeto e peculiaridades do local.

Para execução da cravação das estacas devem ser observados alguns fatores essenciais, dentre os quais Klenk e Russo Neto (2017) destacam: o equipamento utilizado para cravação das estacas, o peso do martelo e a altura que o mesmo será erguido, as emendas necessárias para se atingir a profundidade determinada, a nega, o repique e a profundidade cravada.

Ainda segundo Klenk e Russo Neto (2017), o sistema de cravação deve ser dimensionado de modo a levar à estaca até a profundidade prevista para a sua capacidade de carga, sem danificá-la.

A cravação de estacas com martelo de queda livre deve estar de acordo com o que está estabelecido pela NBR 6122 (2010) - Anexo D – Estacas pré-moldadas de concreto – Procedimentos executivos, onde o peso do martelo deve ser superior a 20 kN, sendo o valor mínimo igual a 75% do peso total da estaca.

No caso em que a carga de trabalho da estaca esteja entre 0,7MN e 1,3 MN o peso do martelo estabelecido pela NBR 6122 (2010) não pode ser inferior a 40 kN.

Para estacas cuja carga de trabalho seja superior a 1,3 MN, a NBR 6122 (2010) indica a análise previa o sistema de cravação.

Com o objetivo de uniformizar as tensões dinâmicas que surgem devido aos impactos do martelo sobre a cabeça das estacas deve-se instalar entre o martelo e o topo da estaca, um capacete metálico (KLENK; RUSSO NETO, 2017).

O capacete é composto na sua parte superior por um cepo de madeira dura, sobre o qual são desferidos os golpes do martelo e sua principal função é proteger o martelo de tensões elevadas. O amortecedor, chamado de almofada ou coxim, composto geralmente de madeira mole, situa-se na parte inferior do capacete e tem como função amortecer a estaca dos golpes e das altas tensões, e assim garantir que o risco de quebras de estacas seja reduzido. (GONÇALVES et al., 2009).

Klenk e Russo Neto (2017) alertam que as dimensões desses elementos devem estar de acordo com a geometria da estaca, evitando folgas excessivas que possam provocar oscilações demasiadas das estacas durante a cravação e, consequentemente, possíveis danos.

Os coxins fabricados madeira natural ou industrial geralmente são inutilizados após o uso em cada estaca cravada, não apresentando condições de reaproveitamento. Segundo Gonçalves *et al.* (2009), grande parte das cravações ocasiona a incineração

do coxim, principalmente quando se cravam estacas em solos muito compactos, o que exige inúmeras trocas de coxins no transcurso das cravações, especialmente nas estacas mais longas, onde existem vários segmentos a serem cravados.

Gonçalves *et al.* (2009) alertam ainda, para o fato de que os coxins não devem apresentar nós que possibilitem a ocorrência de propagação de tensões diferenciais em decorrência dos impactos do martelo, e apresentar uma superfície plana e nivelada em relação ao plano do topo das estacas, segundo Gonçalves *et al.* (2009).

O controle de cravação deve ser realizado para todas as estacas, contendo no mínimo os seguintes itens: identificação da obra e do contratante; data da cravação; identificação da estaca; comprimento útil e comprimento cravado da estaca; composição dos elementos utilizados; peso e altura de queda do martelo para determinação da nega; suplemento utilizado; características geométricas da estaca; intervalo de tempo decorrido da cravação; cota do terreno e do arrasamento da estaca; desaprumos e desvios de locação; características e identificação do equipamento de cravação; deslocamento e levantamento de estaca por efeito de cravação na vizinhança; observações e anormalidades (TÉCHNE, 2016).

2.2.3.2 Nega e repique

Medrano (2014) define as fórmulas dinâmicas como sendo expressões matemáticas que tentam correlacionar medidas de deslocamento da estaca (nega e repique elástico) registradas durante a aplicação do golpe pelo sistema de cravação com um valor de resistência mobilizada, que a princípio não é a capacidade de carga estática da estaca.

A NBR 6122 de 2010 define nega como a medida da penetração permanente de uma esta, causada pela aplicação de um golpe de martelo ou pilão, sempre relacionada com a energia de cravação. Dada a sua pequena grandeza, em geral é medida para uma série de dez golpes. Já o repique é definido como a parcela elástica do deslocamento máximo de uma estaca decorrente da aplicação de um golpe do martelo ou pilão.

Avelino (2006) indica que a nega deve ser obtida riscando-se uma linha horizontal na estaca com o auxílio de uma régua apoiada em dois pontos da torre do bate-estacas, aplicando dez golpes com martelo, riscando novamente, medindo a distância entre as duas linhas e dividindo esta distância por dez para se obter a penetração média por golpe (Figura 4). Ainda segundo Avelino (2006), outra maneira consiste em se prender uma folha de papel no fuste da estaca, riscar uma linha horizontal com uma régua apoiada em pontos fora da estaca e manter o lápis apoiado na régua durante o golpe. O lápis então deixará marcado no papel o movimento da estaca ao receber o golpe, indicando a nega e o repique da estaca (Figura 5).

Fonte: Velloso e Lopes (2002)

Fonte: Velloso e Lopes (2002)

2.2.4 Controle de capacidade

Os principais objetivos do controle executivo de estacas cravadas, segundo Medrano (2014) são: garantir um comprimento mínimo para que a capacidade de carga da estaca seja igual ou maior que o valor calculado em projeto, e garantir a homogeneidade das resistências de todo estaqueamento.

Nos elementos de fundações por estacas pré-moldadas há a possibilidade de controlar a sua execução, por meio da aplicação de golpes do martelo no topo da estaca e da obtenção e análise da resposta do conjunto estaca-solo. Segundo Velloso e Lopes (2002) estas respostas podem ser obtidas por medições de: nega repique elástico e por meio de instrumentação.

De posse desses parâmetros e utilizando-se de fórmulas dinâmicas de cravação, estabelecidas teoricamente ou empiricamente é possível estimar, segundo Medrano (2014), a resistência mobilizada na estaca durante o golpe, e assim comparar com o valor previsto já que a principal condicionante de uma obra apoiada em fundações profundas é a definição do comprimento da estaca que atenda as duas condições de projeto: ao estado-limite último (ELU) e ao estado-limite de serviço (ELS).

O controle executivo é, normalmente, orientado por critérios rudimentares de cravação, orientados por índices convencionais dos registros de nega e repique elástico, fórmulas dinâmicas, controle de energia e outros (MELO, 1997).

SOARES e DIAS (1986) ressalta que a cravação de uma estaca em argila altera o estado de tensões e de pressões neutras existentes antes do processo de instalação. Ainda segundo Soares e Dias (1986) o solo em torno da estaca é deslocado e amolgado, formando uma zona altamente perturbada (amolgada). E uma região ao redor da estaca, alguns pontos atingem a ruptura e o excesso de pressão neutra induzido pelas tensões de instalação tendem a se dissipar, provocando adensamento desta massa de solo em torno da estaca (recuperação), que depende da natureza da argila, dimensões da estaca e outros fatores. Este efeito é reconhecido na literatura como "*set up*" e pode ser definido como sendo a recuperação da capacidade de carga num determinado tempo em relação àquela obtida logo após a cravação de uma estaca.

Ao se tratar de técnicas de controle da capacidade de carga em estacas cravadas, Balech (2000) ressalta que deve ser dada muita atenção no que diz respeito à questão da recuperação do solo, após a interrupção da cravação, ou seja, o efeito "*set up*". Este fenômeno é capaz de alterar consideravelmente a capacidade de carga das estacas.

2.2.5 Diagrama de cravação

Medrano (2014) afirma que uma das formas mais simples de se acompanhar a execução de uma estaca é através da contagem de golpes necessários para a estaca penetrar no solo em função da profundidade. Estes valores podem ser utilizados para realização de uma análise comparativa com índices de resistência a penetração de um ensaio SPT.

O diagrama consiste, portanto, em registrar o número de golpes aplicados, num determinado nível de energia, para a cravação de um comprimento pré-definido, normalmente se adota 0,5 m ou 1,0 m (MEDRANO, 2014).

A NBR 6122/2010 estabelece a obrigatoriedade de elaboração do diagrama de cravação em 100% das estacas.

Velloso e Lopes (2010) recomendam a elaboração do diagrama de cravação em pelo menos uma de cada 10 estacas, ou em uma estaca de cada grupo ou pilar, ou ainda, sempre que uma estaca for cravada `próximo de um ponto sondagem.

O procedimento consiste em realizar marcações na estaca, com espaçamento pré-definido (0,3 m, 0,5 m ou 1,0 m), antes da estaca ser levantada, e, durante o processo de cravação, contar os golpes necessários para cravar um trecho entre marcas (MEDRANO, 2014).

2.2.6 Prova de carga estática

De acordo com a NBR 12131/2006 a prova de carga consiste, basicamente, em aplicar esforços estáticos à estaca e registrar os deslocamentos correspondentes, podendo estes esforços serem axiais, de tração ou de compressão, ou transversais. A norma citada define, ainda a obrigatoriedade de execução de provas de carga estática em obras, e especifica a quantidade em função do tipo de estaca.

Segundo Velloso e Lopes (2010) as provas de carga estáticas são realizadas nos elementos de fundação com o objetivo de verificar o comportamento previsto em projeto e retroanalisar as premissas adotadas no modelo de previsão, em termos de capacidade de carga e deslocamentos e definir a carga de trabalho em casos que não se tem nenhum conhecimento prévio da área e/ou consiga prever o comportamento.

A prova de carga estática visa reproduzir o carregamento real que será aplicado à fundação, provocado através de incrementos de carga (em estágios), e medindo-se os deslocamentos correspondentes (MEDRANO, 2014).

O dispositivo de aplicação de carga é constituído por um ou mais macacos hidráulicos alimentados por bombas elétricas ou manuais, atuando contra um sistema de reação estável, que deve ser projetado, montado e utilizado de forma que a carga aplicada atue na direção desejada, sem produzir choques ou vibrações. A critério do projetista, este ensaio pode ser realizado com carregamento lento, rápido, misto ou cíclico (lento rápido), para estacas submetidas a esforços axiais de compressão. (ABNT, 2006).

De acordo com Medrano (2014), quando na execução da PCE (prova de carga estática) o ensaio não permite caracterizar a carga de ruptura do sistema, assim pode-

se tentar a extrapolação da curva carga aplicada x deslocamento, adotando-se um modelo matemático que proporcione o melhor ajuste com os dados medidos na prova de carga. As principais funções utilizadas são:

a) Função exponencial proposta por Van der Veen (1953) e o método gráfico de Mazurquiewicz (1972).

b) Função parabólica proposta por Hansen (1963).

c) Função hiperbólica proposta por Chin (1970) e o método da rigidez infinita de Décourt (1996).

d) Função polinomial proposta por Massad (1986).

Segundo Medrano (2014), ainda que a carga de ruptura tenha sido definida através de um modelo matemático a curva carga aplicada versus deslocamento precisa ser interpretada para a definição da carga admissível da estaca, visto que apenas um exame visual na curva e sua extrapolação podem ser insuficientes, mesmo nos casos em que se caracterizou uma assíntota vertical, pois a simples alteração da escala do gráfico pode afetar a interpretação.

Assim, Velloso e Lopes (2010) apresentam os principais critérios que podem ser empregados na interpretação da carga de ruptura, agrupando-os em quatro categorias:

- Critérios baseados num valor absoluto do recalque sejam totais, plástico ou residual.
- Critérios baseados na aplicação de uma montagem ou regra geométrica à curva.
- 3. Critérios que buscam definir uma assíntota vertical.
- Critérios que caracterizam uma carga de ruptura convencionada a partir de uma parcela do encurtamento elástico somado a um percentual do diâmetro da base.

A experiência de Velloso e Lopes (2010) com a extrapolação da curva cargarecalque pelo método de Van der Veen (1953) constatou que que estacas carregadas até um nível elevado de carregamento não, necessariamente, apresentam, uma assíntota vertical, mas que pode que se pode obter uma extrapolação razoável se o recalque máximo atingido na prova for de, pelo menos, 1% do diâmetro da estaca. Decourt (1996) propôs que se interprete os resultados da prova de carga utilizando-se do gráfico de rigidez; isto é, no eixo vertical plota-se a razão Q/r (carga/recalque) em cada estágio de carregamento e no eixo horizontal a carga atingida no estágio. Decourt observou que apenas no caso de estacas cravadas que têm a quase totalidade da sua capacidade de carga devida a atrito lateral, o gráfico apresenta uma reta que, se prolongada, atingiria o eixo horizontal indicando rigidez nula e portanto, ruptura física. Decourt (2008) propõe que o gráfico de rigidez seja interpretado com os pontos correspondentes aos primeiros estágios como indicadores do comportamento do atrito e com os pontos correspondentes aos últimos estágios como indicadores de comportamento da ponta ou base.

O Método de Van der Veen (1953) é o método de extrapolação da curva recalque mais utilizado no Brasil, segundo Monteiro *et al* (2018). Neste método, a carga última é definida por tentativas através de uma equação matemática ajustada como função do trecho que se dispõe da curva carga-recalque.

Esse método sugere que partindo-se de um determinado valor de Pr (Carga de ajuste) qualquer adotado, calculam-se os valores correspondentes de "ln(1/(P/Pr)" que são plotados em um gráfico em função do recalque "r". Novas tentativas são realizadas com outros valores de Pr até que o gráfico resulte, aproximadamente, em uma linha reta, adotando este valor Pr como o valor de carga de ruptura do elemento (MONTEIRO *et al,* 2018).

O Método da Norma NBR 6122/ 2010 estabelece uma carga de ruptura convencionada correspondente a um deslocamento ou recalque (ρ) calculado pela fórmula:

$$\rho = \left(\frac{RxL}{ExA}\right) + \frac{D}{30}$$

(5)

Onde:

 $\rho = recalque$;

R =carga de ruptura convencional ;

L =comprimento da estaca ;

A =área da seção transversal da estaca ;

E = módulo de elasticidade da estaca ;

D = diâmetro do círculo circunscrito à estaca (mm).

Segundo a NBR 6122/1996, as unidades devem ser compatíveis com a unidade do módulo de elasticidade.

O Método de Davisson é similar ao da NBR 6122/1996, e fixa um valor de recalque máximo para o qual é considerada a carga limite, não propriamente carga de ruptura. A fórmula considerada por Davisson é:

$$\rho = \left(\frac{RxL}{ExA}\right) + 3,8mm + \frac{D}{120} \tag{6}$$

Onde:

 $\rho = recalque;$

R =carga de ruptura convencional ;

L =comprimento da estaca ;

A =área da seção transversal da estaca ;

E = módulo de elasticidade da estaca ;

D = diâmetro do círculo circunscrito à estaca (mm).

As unidades de adotadas foram as mesmas convencionadas pelo método da NBR 6122, sendo: (mm) para comprimento (L) e recalques (ρ); (MPa) para módulo de elasticidade (E) e (N) para capacidade de ruptura convencional (R).

Segundo Solugeot (2018) o método de Davisson é muito difundido e tem a vantagem de permitir o cálculo com antecedência do recalque máximo apenas considerando as características físicas e geométricas da estaca.

O método de Van-der Veen é um dos mais utilizados em nosso país, e consiste em encontrar o valor de Pult (carga última adotada), por tentativas, traçando um gráfico: $-\ln(1-P/Pult)$ em função do recalque (ρ), ou seja, entrando com os valores de P (carga) em relação ao recalque (Figura 6). Traçam-se várias curvas para cada Pult, até ser encontrado o valor linear que é o resultado final Monteiro *et al* (2018).

Figura 6 - Estimativa do P Último - Método De Van Der Veen (Magalhaes 2005)3,

Fonte: Solugeot (2018).

Aoki (1976) observou que a reta obtida com a aplicação do método de Van der Veen (1953) não passava pela origem, mas apresentava um intercepto. Assim foi proposta a inclusão de um intercepto "b", dando a origem do método de Van der Veen generalizado (ou Van der Veen modificado por Aoki), por meio do qual se obtém-se a curva ajustada (Figura 7).

Fonte: Silva (2015).

³ MAGALHÃES, P. H. L. Avaliação dos Métodos de Capacidade de Carga e Recalque de Estacas Hélice Contínua Via Provas de Carga. 2005. 243 f. Dissertação (Departamento de Engenharia Civil e Ambiental) – Universidade de Brasília, 2005.
Interpola-se uma reta pelo método dos mínimos quadrados, para cada um dos valores de Pr que devem ser arbitrados. O valor de Pr final será aquele correspondente ao melhor ajuste da regressão linear Monteiro *et al* (2018).

2.2.7 Superfície resistente

A definição de superfície resistente está vinculada a uma análise global (Figura 8) que considera as variabilidades estrutural e geotécnica e a influência da atividade humana no processo. Em última análise, o problema pode ser condensado no estudo da solicitação e da resistência (Figura 9) referentes ao sistema de fundação (AOKI; CINTRA, 1999)⁴, apud Silva (2004).

Figura 8 –Camada resistente num sistema global: obra + ambiente.

Figura 9 - Camada resistente num subsistema:

Segundo Aoki (2002) o objetivo num estudo da carga admissível de um sistema de fundações por estacas é a definição da superfície resistente, em que nessas condições a fundação será segura e confiável.

Medrano (2014) também afirma que em Fundações, um aspecto fundamental é o reconhecimento do mecanismo de transferência de carga entre o elemento estrutural e o maciço que o rodeia e suas particularidades (interação solo x estrutura). O autor

⁴ CINTRA, J. C. A. & AOKI, N.. **Carga admissível em fundações profundas.** Livro do Projeto Reenge. Escola de Engenharia de São Carlos – USP, São Carlos, SP, 1999

ainda afirma que para cada obra, a superfície resistente executada terá uma geometria única, e dependente do sistema de cravação, tipo de estaca, característica do maciço, e de parâmetros dos critérios de controle executivo.

2.3 MODELAGEM DIGITAL TRIDIMENSIONAL

Viana (2017) em sua dissertação afirma que são vários os termos utilizados para definição de um modelo digital tridimensional, citando que os engenheiros americanos do Massachusetts Institute of Technology (MIT) foram os primeiros a utilizarem o termo MDT (Modelo Digital de Terreno), no final da década de 1950. A partir do termo MDT, Petrie e Kennie (1990) afirma que vários outros termos, como o Modelo Digital de Elevação (MDE), Modelo Digital de Altura (MDA), Modelo Digital de Superfície (MDS) e Dados de Elevação Digital do Terreno (DEDT) foram combinados para descrever e representar o terreno.

Segundo Miller e Laflamme (1958), MDT é uma representação estatística da superfície contínua do terreno, a partir de um grande número de pontos selecionados com coordenadas tridimensionais conhecidas, num sistema de coordenadas arbitrário.

Segundo Medeiros (2019) alguns Países, como o Brasil, têm utilizados os termos MDE (Modelo Digital de Elevação) e MDT são considerados como sinônimos, já em outros (como os EUA) o MDT é considerado como complemento do MDE, sendo formado por dados vetoriais. O termo MDE, por sua vez, em geral é usado, no Brasil, para se referir a um dado raster, um modelo de parte da superfície da terra levando em conta suas altitudes

Ainda segundo Medeiros (2019) o MDE ou MDT considera o valor de altitude em relação ao solo, já o MDS além disso, leva em conta qualquer edificação seja ela natural ou não, para saber a altitude.

Segundo o Laboratório de Geomática (2016) o MDT é representação altimétrica da superfície "nua" do terreno, o MDS inclui ao terreno prédios, árvores, veículos e outros, e o MDE é um termo utilizado de forma genérica, tanto para MDT quanto para MDS.

2.3.1 Geoestatística e modelagem por método de interpolação

A Geoestatística é uma metodologia da Estatística Espacial baseada na teoria das variáveis regionalizadas, cujo comportamento espacial apresenta características intermediárias entre as variáveis verdadeiramente aleatórias e as totalmente determinísticas (Garcia, 2017).

A estimativa de parâmetros em pontos desconhecidos é algo recorrente e necessário em estudos geotécnicos, uma vez que o completo conhecimento de uma área de estudo é impossibilitado em muitos casos pelos custos financeiros (Garcia, 2017).

Atualmente há uma diversa gama metodológica de interpolação para calcular a malha de pontos, entre eles: método dos polígonos, da triangulação de Delaunay, do vizinho mais próximo, das curvas de isovalores, do IDW (Inverse Distance Weighted – Ponderação do Inverso da Distância) e a krigagem (FOLLE, 2002). Atualmente pode-se adicionar a esta listagem os métodos Topo to Raster, Spline, etc (MARCUZZO, CARDOSO e MELLO, 2010).

Pelas análises de Talamini Neto (2001) é possível afirmar que cada método apresenta suas vantagens e suas desvantagens, e a escolha para utilização depende de fatores como: quantidade e a densidade de pontos a serem interpolados, a capacidade de processamento do computador utilizado, o nível de precisão almejado, bem como a disponibilidade de tempo. Ainda segundo o autor, as metodologias de interpolação mais usuais em trabalhos que tratam de dados geotécnicos são: IDW e krigagem.

Krajewski & Gibbs (1996⁵ apud LANDIM, 2000) refere-se a krigagem como o método com a melhor precisão geral, dentre os métodos de maior utilização. Os autores, no entanto, alertam para a baixa velocidade de computação com a utilização da krigagem.

Já Watson e Philip (1985) se referem aos resultados do IDW como muito bons, quando são obtidos quando a amostragem suficientemente densa, em relação à variação local. No entanto, quando a amostragem dos pontos de entrada for esparsa ou irregular,

⁵ Krajewski, S.A.; Gibbs, B.L. Understanding Contouring: A pratical Guide to Spatial Estimation and Contouring Using a Computer and Basics of Using Variograms: Gibbs Associates. 1996.

segundo os mesmos autores, os resultados podem não representar suficientemente a superfície desejada.

Segundo Nogueira e Amaral (2009) o método Topo to Raster utiliza-se da eficiência computacional da interpolação local, como ponderação do inverso da distância, sem perder a continuidade superficial dos métodos globais de interpolação, como Krigagem.

2.3.1.1 IDW (Inverse Distance Weighted – Ponderação do Inverso da Distância)

Para o interpolador IDW o peso de cada um dos pontos analisados é inversamente proporcional à função distância entre eles. Sendo, portanto, um interpolador local, no qual o raio (distância) de busca dos pontos amostrados e a potência da função são parâmetros essenciais para sua aplicação (MARCUZZO et al., 2011).

A interpolação utilizando-se do IDW gera uma modelagem em que pontos próximos possuem maiores influências sobre os vizinhos e geram valores similares enquanto que pontos distantes tornam-se independentes (EL-SHEIMY et al., 2005).

2.3.1.2 Topo to Raster

O interpolador Topo to Raster é um dos mais atuais, dentre os amplamente conhecidos e foi desenvolvido por Hutchinson, na Austrália, baseado no algoritmo ANUDEM (Australian National University's Digital Elevation Model), e pode ser usado para construir MDEs baseado nos seguintes dados de entrada: curvas de nível, pontos cotados e linhas de hidrografia, para que o modelo resultante preserve a forma e também a estrutura de drenagem (Hutchinson et al., 2009).

Segundo Giacomin, et al (2014) este interpolador é uma mistura entre as estratégias local e global.

2.3.1.3 Krigagem e Semivariograma

Duas ferramentas são fundamentais no estudo das variáveis regionalizadas: o variograma (ferramenta estatística que dá uma medida da continuidade espacial) e a krigagem (um interpolador não viesado e de variância mínima). A krigagem consiste em combinar as estimativas dos parâmetros do modelo variográfico com os dados observados para produzir uma superfície de predição (BATISTA; *et al.*, 2015).

Krigagem é um método geoestatístico que leva em consideração as características espaciais de autocorrelação de variáveis regionalizadas (LANDIM, 2000). Segundo o mesmo autor o método de krigagem não é tendencioso, fornecendo uma das melhores estimativas lineares e com variância mínima, sendo constantemente eleita a melhor metodologia para mapeamento de solos.

2.4 CARACTERIZAÇÃO DA OBRA E DO AMBIENTE

Este capítulo oferece uma apresentação da obra estudada durante a confecção de trabalho de conclusão de curso, bem como uma caracterização elementar do ambiente onde a mesma se insere.

2.4.1 O Sistema de Esgotamento Sanitário ETE Rio Tavares

O Sistema de Esgotamento Sanitário ETE Rio Tavares, foi projetado utilizando-se da tecnologia de tratamento baseado na sequência de processos Fisicoquímico + Filtração Biológica com Nitrificação + Desnitrificação Anóxica com MBBR + Desinfecção UV + Digestão Anaeróbica de Iodos, a partir do modelo TRICKTOW® patenteado pela empresa SEINCO S.L.R (Figura 10).

Com base no Estudo Populacional e Estudo de Autodepuração do Rio Tavares determinou-se o dimensionamento da ETE para atender uma vazão média de 200,0 l/s e uma população equivalente a 95.040 habitantes.

O padrão de lançamento de efluentes deverá atender os valores associados às conclusões do Estudo Ambiental da bacia do Rio Tavares. A fim de alcançar os valores dos parâmetros de qualidade final estabelecidos, assim como atender aos critérios operacionais e de eficiência indicados no capítulo anterior, foi escolhida seguinte seqüência de processos seguindo o modelo TRICKTOW® da empresa STA Ltda (SEINCO):

> Tratamento Preliminar (TP), mediante gradeamento médio/fino e desarenadores.

- Sedimentação primária com placas Lamela com tratamento físicoquímico (FQ), que compreende as etapas de coagulação química, floculação hidráulica e sedimentação de acelerada com lamela;
- Filtração Biológica Nitrificante (FBN) em filtro biológico de médio suporte plástico em modalidade nitrificação.
- Desnitrificação (DN) em célula anóxica com enchimento randômico, agitação mecânica e em presença de nitratos recirculados do FBN.
- Sedimentação secundária (SS) do efluente do FBC em unidade com módulos lamelas;
- Digestão anaeróbia (DAN) dos lodos do tratamento primário e do lodo secundário excedente do FBC. A unidade DAN fica debaixo das unidades de sedimentação primária e secundária também chamado neste trabalho apenas de Tricktow;
- Desinfecção por irradiação UV;
- Desidratação do lodo digerido com centrífuga;
- Processos complementares: acondicionamento e queima de gás, preparação e dosagem de produtos químicos, etc.

Figura 10 – Fluxograma do Sistema de Esgotamento Sanitário ETE_Rio Tavares.

Fonte: SEINCO, 2017.

A nível estrutural a ETE_Rio Tavares (Figura 11) é composta dos seguintes elementos:

- Duas unidades de digestão, sedimentação e filtro biológico, denominada em canteiro de obra Tricktow_Norte e Tricktow_sul;
- Dois tanques de desnitrificação, denominada em canteiro de obra Desnitrificador_Norte e Desnitrificador_sul;

- Um tanque pulmão;
- Uma casa química e desidratação e desidratação de lodo;
- Uma unidade de desinfecção UV;
- Uma unidade de pré-tratamento;
- Estruturas de apoio: tanque de armazenamento de produtos químicos (PPQQ); subestação, escritório e estação elevatória de serviço.

Figura 11 – Layout da ETE_Rio Tavares.

Fonte: adaptado de SEINCO, apud Catarina SAN, 2017.

Figura 12 – Situação atual da obra de instalação da ETE_Rio Tavares.

Fonte: da autora.

2.4.2 Localização e caracterização do terreno

A ETE Rio Tavares está localizada na Rodovia Francisco Magno Vieira (SC-405), S/N, no bairro Rio Tavares (

Figura 13), na porção Sul da ilha do município de Florianópolis, capital do estado de Santa Catarina, entre trevo para do aeroporto e o trevo do Campeche. Tal localidade pertence à Bacia do Rio Tavares pertence à região hidrográfica 8 do Estado de Santa Catarina, denominada RH 8 (Litoral Centro).

Figura 13 – Localização da ETE_Rio Tavares.

Fonte: modificado de Google Earth, 2018.

2.4.2.1 Características da Geológia e da Pedológia da área

Em termos geológicos, o Mapa Geológico da Ilha de Santa Catarina, elaborado por Tomazolli & Pellerin (2014) indica que a área da obra da Sistema de Esgotamento Sanitário ETE Rio Tavares foi formada por processo de acumulação de sedimentos de origem colúvio-aluvial. Isto quer dizer que, enquanto modelado de agradação, a morfologia do terreno se constituiu durante o Holoceno, por sequências alternadas de:

- a) pacotes deposicionais de origem aluvionar, isto é, vinculados ao desenvolvimento da planície (costeira) de fácies fluvial do rio Tavares, em condição eustásica regressiva e ambiente de baixa energia erosiva (transporte < taxa de acumulação sedimentar), com predomínio de granulometria de fácies mais finas, tipicamente areno-silto-argilosa, de coloração predominantemente cinza, verde acinzentada e negra;
- b) pacotes deposicionais de origem coluvionar, isto é, vinculados a mobilização gravitacional de elúvios (mantos de alteração) por diversas tipologias de movimentos de massa (deslizamentos e desmoronamentos, por exemplo), em condição paleoclimática sensível e dominantemente (na proporção dos ciclos paleogeográficos) mais seca que a atual.

Em relação a geomorfologia, considerando se tratar de um modelado de agradação, a área da obra da Sistema de Esgotamento Sanitário ETE Rio Tavares

apresenta um relevo próximo ao nível do mar (nível geral da erosão), com cotas entre 2,5 metros e 5 metros, de baixíssima declividade, composto, como já registrado, por depósitos colúvio-aluviais, sendo os últimos (os aluviais) aqueles amplamente dominantes, e que, portanto estabelecem a planitude elementar da topografia. Os depósitos coluviais, por sua vez, predominam na interface com as encostas graníticas, e, portanto, sustentam uma topografia sensivelmente inclinada, perfazendo o sopé da vertente. Nos registros das sondagens realizadas na área para a execução das fundações, há clara alternância de fácies sedimentares com presença de blocos de matacões existentes desde 10 até 20 metros de profundidade, fato que comprova que os depósitos colúvio-aluviais (na condição de abordagem enquanto camada indivisa) encontram-se, de fato, interdigitados sobre o embasamento cristalino (granito).

Acerca da condição pedológica local, por se tratar de sedimentos dispostos em acamadamentos não horizontalizados, a pedogênese é incipiente, com horizonte O orgânico e horizontes subjacentes de textura silto-argilosa vinculadas ao hidromorfismo local, onde abunda a presença de horizontes *glei* de coloração cinza-clara, cinza escura e esverdeada e eventual presença de turfas em níveis mais profundos.

Finalmente, em relação a hidrogeologia, a existência de camadas de diferentes granulometrias e a presença de descontinuidades estratigráficas em nível de macroescala permitem o comparecimento de aquicludes e aquitardos em vários subníveis, sem a presença obrigatória de lençol livre um pouco mais profundo. Isto se revela pelas profundidades variáveis obtidas nos ensaios de sondagem a percussão, onde se observou níveis d'água (N.As) desde próximo a superfície natural (0,30 metro), até pouco mais de 1,5 metro. Os relatórios de sondagem a percussão também evidenciaram que a espessura dos aquicludes e aquitardos é variável desde poucos centímetros (<6 cm) até quase 50 centímetros (TOMAZOLLI; PELLERIN 2014)).

Em função da presença de curso d'água natural perene antes do acesso à área do Sistema de Esgotamento Sanitário ETE Rio Tavares (perfazendo um nível de base local) a superfície potenciométrica acompanha a isoípsas do terreno apontando a drenagem das águas subsuperficiais e subterrâneas para o talvegue daquele curso e para talvegue do rio Tavares, sentido S-SE.

3 METODOLOGIA

Os procedimentos metodológicos utilizados para estruturação e concepção deste trabalho fundamentam-se em três etapa:

A primeira, constitui-se na aquisição, verificação e estruturação das informações dos laudos de sondagem, projeto de fundação do empreendimento SES_ETE_Rio Tavares e boletins de cravação das estacas pré-moldadas de concreto.

A estruturação de toda a etapa 1 foi realizada no software EXCEL® com elaboração de planilhas que auxiliaram na organização, no tratamento e na modelagem das informações por meio do processamento no software ArcGIS®.

De pose das informações obtidas e organizadas, a segunda etapa executiva deste trabalho constitui-se das modelagens digitais tridimensionais do terreno, a partir da utilização do software de SIG, ArcGIS®, conforme já mencionado. Essa esta etapa foi subdivida em duas, sendo: a modelagem digital de elevação e a modelagem de superfície, detalhadas a seguir.

Numa terceira etapa, utilizando-se de todas as informações produzidas e daquelas referenciadas foi possível a análise discursiva das situações ilustradas.

A análise parte de uma comparativa entre os modelos digitais tridimensionais da superfície resistente obtidas em três situações e momentos distintos da obra de implantação da SES_ETE Rio Tavares:

- 1. superfície gerada pelas cotas de impenetrável do SPT (fase anteprojeto);
- superfície gerada a partir da cota de atingimento previsto das estacas, admitidas no dimensionamento do projeto de fundações da obra (fase de projeto) e;
- superfície gerada pelas cotas de assentamento real das estacas após cravação (fase executiva).

Na sequência (Figura 14) é apresentado o fluxograma de trabalho e, em seguida, o detalhamento dos métodos e etapas utilizadas para a elaboração de cada uma das superfícies modeladas.

3.1 ELABORAÇÃO DE PLANILHAS COM INFORMAÇÕES ESTRAÍDAS DOS LAUDOS DE SONDAGENS E DOS BOLETINS DE CRAVAÇÃO DAS ESTACAS

Foi elaborada uma planilha baseada nos laudos dos 18 pontos válidos de sondagem executados na área de implantação do SES_ETE Rio Tavares. As informações contidas são:

- Identificação do furo de sondagem;
- pares de coordenadas geodésicas, em UTM (fuso 22) e;
- cota máxima atingida pela sondagem

Outra planilha elaborada teve os dados extraídos dos boletins de cravação das estacas, sendo:

- identificação da estrutura;
- identificação da estaca;
- pares de coordenadas geodésicas, em UTM (fuso 22) e;

• cota de assentamento da estaca cravada;

Na segunda planilha elaborada foi acrescida uma coluna com as cotas de assentamento máximo das estacas, previstas em projeto. Este dado foi extraído do projeto de fundação da obra.

3.2 MODELAGEM DIGITAL TRIDIMENSIONAL

A modelagem digital tridimensional de dados foi dividida em duas etapas. A primeira foi com a finalidade de extrair os dados para construção do Modelo Digital da Superfície (MDS), e outra para construir o modelo da profundidade alcançada com as sondagens e estaqueamentos, por meio de um Modelo Digital de Elevação (MDE).

A coleta de dados da superfície foi realizada com o auxílio de Drone, a partir do mapeamento do terreno, possibilitando, assim, a extração de uma Nuvem Densa de Pontos, bem como a construção de um ortofotomosaico do cenário da obra. O resultado desse levantamento permitiu ver com detalhes a situação da superfície do terreno, evidenciando a posição das estruturas da obra em relação as sondagens e estaqueamentos realizados, conforme ilustra o exemplo apresentado na Figura 15.

Figura 15 – Exemplo do resultado do cruzamento dos dados da modelagem da superfície com os dados do estaqueamento realizado.

Fonte: da autora.

O Drone utilizado para a Coleta de dados foi o DJI MAVIC PRO. Ele possui um sensor CMOS de 1/2.3" com lentes de 26 mm que permitem a medição do campo de visão (FOV) de 78.8°, com distância focal de 2.2, captando imagens em 12,71 megapixels. A operação do Drone foi auxiliada pelo aplicativo Drone Deploy, possibilitando, assim, programar plano de voo e controlar a aeronave em baixa altitude (Figura 16).

Figura 16 – Plano para obtenção da Nuvem de Pontos Densa e construção do ortofotomosaico e Modelo Digital de Superfície (MDS)

Fonte: modificado de Google Earth, 2018.

O processamento dos dados coletados com o Drone foi realizado por softwares computacionais de GIS⁶. Para o processamento da Nuvem Densa de Pontos, ortofotomosaico e do Modelo Digital de Superfície (MDS) utilizou-se o Software Agisoft PhotoScan Professional®. Os resultados dos processamentos do Agisoft PhotoScan® foram importados nos softwares do Pacote ArcGis®.

Já para processar o alcance das sondagens e do estaqueamento no substrato do solo foi construído Modelos Digitais de Elevação (MDE) a partir da interpolação de dados. De posse dos projetos de sondagem, dos dados de projeto e dos dados do estaqueamento foram coletadas e tabuladas as coordenadas UTM e as profundidades alcançadas em cada ponto. Posteriormente esses dados foram importados em ambiente GIS, permitindo a utilização de algoritmos de interpolação para construção do MDE, tanto para a superfície de alcance das sondagens, quanto para a superfície de alcance das estacas cravadas.

⁶ Geographic Information System (Sistema de Informação Geográfica)

As ferramentas usadas para a interpolação dos dados em ambiente GIS foram os algoritmos: *Topo to Raster*⁷, IDW, e Krigagem.

Foram realizadas modelagens com cada um dos algoritmos citados, com o objetivo de visualizar qual fornecia o melhor modelo para a situação proposta.

Uma vez processados os dados da superfície do terreno, bem como os dados do alcance das sondagens e estaqueamentos no subsolo, estes foram importados no Software ArcScene®, que permite a visualização e análise dos dados em 3D. Com isso foi possível realizar as análises para avaliação e comparação das diferenças entre os dados de sondagem, dados projetados e o resultado da execução do estaqueamento.

⁷ Localizada em: Arc toolbox / Spatial Analyst Tolls / Interpolation / Topo to Raster

4 RESULTADOS

As informações tabeladas a partir dos laudos de sondagem estão apresentadas como apêndices, neste trabalho. A Figura 17, apresentada a seguir, ilustra o posicionamento de cada furo de sondagem em relação as estruturas da ETE. Sendo:

- A localização da realização de sondagem a percussão SPT, os pontos destacados em amarelo e;
- Os furos de Sondagem Mista (percussão e rotativa) os pontos destacados em vermelho.

Figura 17 – Croqui da ETE Rio Tavares, com a locação dos furos de sondagem SPT válidos, destaque em amarelo e furos de Sondagem Mista, destaque em vermelho.

Fonte: da autora.

Como se percebe na imagem anterior foram executados apenas 3 furos de sondagem mista rotativa, o que não uma representatividade total da área. Portanto estes dados serviram apenas para fundamentar algumas das discussões aqui propostas, mas não foram utilizadas nas modelagens das superfícies.

No Apêndice 1 (informações utilizadas para criação dos MDEs, a partir da sondagem executada), percebe-se que dos 22 (vinte e dois pontos) de sondagem executados (anexo 1), quatro foram excluídos por evidenciarem a presença de matacão ou outra barreira física, que impediu a perfuração ainda na camada superficial (menos de um metro de profundidade) e restringiu a continuação do ensaio. Desta maneira os dados utilizados para criação do modelo digital da superfície resistente estimada pelo SPT foram extraídos dos 18 (dezoito) furos de sondagens válidos.

O Apêndice 2 (informações utilizadas para criação dos MDEs das superfícies resistentes projetada e executada) apresenta os dados utilizados para criação do modelo digital da superfície de assentamento das estacas projetas e para criação do modelo digital da superfície de assentamento das estacas executadas. Sendo a quinta coluna da tabela preenchida com as cotas de assentamento real das estacas (após execução) e a sexta coluna da tabela contempla os dados de projeto. Ressalta-se que adotou-se como valor de projeto, a profundidade máxima prevista para o assentamento das estacas, conforme estabelecido pelo projetista no "projeto de fundações".

No Apêndice 2 estão apresentadas, ainda, todas as coordenadas geodésicas que definem a locação das estacas que compõem a fundação da ETE Rio Tavares e as cotas de assentamento de cada uma das estacas (conforme projeto e conforme boletim de cravação).

Já o Anexo 2 apresenta o projeto de fundação da estrutura Tricktow Norte, sendo esse, um projeto tipo representativo de todos os demais, devido ao expressivo número de arquivos.

Por fim, no anexo 3 é apresentado o diagrama de cravação da estaca 384 da estrutura Tricktow Norte. Foi inserido apenas um boletim de cravação devido ao elevado número de boletins existentes (um para cada elemento de fundação executado, totalizando 767 unidades)

Vale ressaltar que os elementos de fundação foram submetidos a ensaios de prova de carga estáticas, conforme preconiza a NBR 6122/2010 estando, portanto, em

conformidade com normas técnicas. No Quadro 1, a seguir, são apresentados os resultados dos ensaios de prova de carga estáticos realizados para ratificação a aprovação do sistema de fundação do Sistema de esgotamento sanitário SES-ETE-Rio Tavares.

Estaca	Seção (cm)	Data do Ensaio	Carga Ensaiada (tf)	Deformação Máxima Obtida (mm)
Desinfecção UV - E01	30x30	17/07/2018	60	13,56
Desinfecção UV - E14	30x30	12/07/2018	60	2,80
Casa de Química e Desidratação de Lodo - E04	30x30	23/07/2018	60	3,18
Casa de Química e Desidratação de Lodo E07	30x30	24/07/2018	60	1,94
Elevatória de Serviço - E01	30x30	26/07/2018	60	1,94
Pré-Tratamento - E16	30x30	20/07/2018	60	4,73
Pré-Tratamento - E34	30x30	11/07/2018	60	2,09
Pré-Tratamento - E35	30x30	19/07/2018	60	14,51
Pré-Tratamento - E67	30x30	16/07/2018	60	3,00
Subestação - E10	23x23	21/07/2018	60	2,12
Tanque Pulmão - E14	30x30	18/07/2018	60	6,82
Tanque Pulmão - E17	30x30	13/07/2018	60	3,84
Tanque Pulmão - E26	30x30	14/07/2018	60	3,31
Desnitrificador Norte – E41	30x30	30/07/2018	66	4,05
Desnitrificador Norte – E70	30x30	31/07/2018	66	5,38
Tanque PPQQ -E02	30x30	03/08/2018	66	5,06
Tricktow Norte E212	30x30	18/09/2018	96	8,60
Tricktow Norte E243	30x30	28/09/2018	96	12,44
Tricktow Norte E286	30x30	20/09/2018	96	7,45
Tricktow Sul E10	30x30	05/10/2018	96	9,30
Tricktow Sul E26	30x30	26/09/2018	96	6,84
Tricktow Sul E68	30x30	04/10/2018	96	13,50
Tricktow Sul E158	30x30	21/09/2008	96	8,75
Tricktow Sul E169	30x30	27/09/2018	96	9,48

Quadro 1 – Resumo dos resultados dos ensaios de prova de carga estática realizados.

Destaca-se que os dados de prova de carga estática não fizeram parte das informações utilizadas nas modelagens digitais. Estas informações embasam a discussão e confirmam a conformidade do estaqueamento executado.

Vale ressaltar ainda, que para as estacas que alcançaram altos valores de profundidades (é o caso das estacas E10A (DUV), E66 (TRTWS), E9 (TRTWS), E154 (TRTWS), E39A (TPR), E36A (TPR)) foram realizados Teste De Integridade De Estacas (PIT). Todas as estacas testadas apresentaram íntegras, ou seja, essas estacas não se romperam ou desemendou, apenas alcançaram grandes profundidas, o que sugere a presença de alguma peculiaridade geológica na área, por exemplo de uma fenda ou o

resultado do adensamento das estacas durante a cravação das estacas, com consequentemente rompimento do solo ou maciço, devido ao aumento de tensão sobre a área.

4.1 MODELAGEM DA SUPERFÍCIE RESISTENTE ESTIMADA A PARTIR DA COTA DE IMPENETRÁVEL DADA PELO SPT

Os modelos digitais gerados para a superfície impenetrável, a partir dos dados de sondagem foram tratados por 3 diferentes interpoladores: IDW, Krigagem e Topo To Raster.

Os resultados são apresentados a seguir, subdivididos em tópicos, por interpolador.

4.1.1 Interpolador IDW

O MDE gerado, utilizando do interpolador IDW, originou-se das coordenadas X, Y e Z extraídas do laudo de sondagem à percussão SPT, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde à cota de paralização do ensaio SPT. Na Figura 18, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

O IDW por ser um interpolador local (no qual pontos próximos possuem maiores influências sobre os vizinhos e geram valores similares, enquanto que pontos distantes tornam-se independentes) gerou um modelo de superfície de sondagem mais rugoso, em comparação aos outros dois interpoladores empregados. Vale ressaltar que embora o IDW evidencie os pontos de máximo e de mínimo, este interpolador também proporciona ajustes por ponderação, através da utilização de um coeficiente de ponderação, que controla a influência da ponderação e reduz a reduz, conforme a distância a partir do ponto desconhecido aumenta.

Assim percebe-se que os furos realizados para o ensaio SPT que alcançaram maiores profundidades foram: SP2.5 = 21,69 metros de profundidade, cota -18,69m e SP2.7 = 21,51 metros de profundidade, cota -18,50m (ambos situados sob a estrutura do Tricktow Sul) estes pontos se mantiveram como os mais profundos da modelagem e atingiram cotas idênticas aos valores reais, indicando que não sofreram influência da ponderação estabelecida pelo método.

O furo realizado para o ensaio SPT que paralisou mais raso foi o SP1.1A, com 8,86 metros de profundidade e cota -5,86 m (situadas sob as estruturas Desnitrificador Norte). Este ponto se manteve como o mais raso da modelagem e atingiu cota igual ao valor real estabelecido no laudo de sondagem por percussão (até a segunda casa decimal).

Os furos de sondagem percussiva SP1.1, SP1.1A, SP1.4 e SP2.9 paralisaram-se nas cotas mais rasas (fora da média), o que provocou uma certa distorção da modelagem. já os pontos SP2.5, SP2.7, SP2.2, SP2.1, destacaram-se na modelagem por terem alcançados cotas mais profundas.

Numa análise superficial é possível inferir que houve algum tipo de erro (humano, executivo ou de equipamentos) durante a realização dos furos de sondagem SP1.1, SP1.1A, SP1.4 e SP2.9, visto que estes pontos estão localizados, foram realizados no mesmo dia e pelo mesmo operador, nas mesmas condições atmosféricas e não representam a cota do impenetrável (item verificado durante a cravação das estacas).

Vale destacar que o ponto SM01 de amostragem por sondagem mista rotativa foi executada na mesma coordenada do furo SP1.1A e corrobora com a inferência proposta, visto que o furo SM01 atingiu uma profundidade de 17,54 metros em solo, enquanto que o furo SP1.1A penetrou-se por apenas 8,86 metros.

Os demais pontos ensaiados mantiveram-se dentro de uma média e comportaram-se semelhantemente, embora a maioria destes não tenham representado a real profundidade da camada impenetrável do solo (item verificado durante a cravação das estacas).

Figura 18 – MDE da superfície sondada por SPT, gerado utilizando o interpolador IDW.

4.1.2 Interpolador Krigagem

O modelo de superfície gerado pelo interpolador Krigagem se assemelha muito ao modelo gerado pelo interpolador Topo to Raster, apresentado a seguir.

Nos dois casos a modelagem resultou em superfícies mais suaves, com valores intermediários dos dados preservados, e o resultado final foi uma superfície contínua de dados mais suavizados, minimizando os contrastes entre os pontos de sondagem. Essa característica, de estabelecer modelos suaves e fieis às médias regionais coloca o método de Krigagem como o favorito para diversos tipos de trabalho de diferentes áreas, conforme cita Landim (2000).

Para a situação proposta com essa modelagem o método representou, fielmente, as regiões onde o SPT atingiu maior e menor profundidade, mantendo os valores de máximos e mínimos idênticos aos obtidos durante a sondagem (assim como os demais interpoladores) a diferença básica entre este método e o apresentado anteriormente foi na forma de apresentação das áreas intermediários entre um ponto e outro.

Os valores alcançados pela modelagem mantem-se restritos dentre os que alcançaram maiores e menores profundidades durante o ensaio SPT, sendo: as maiores profundidades o SP2.5 = 21,69 metros de profundidade, cota -18,69m e SP2.7 = 21,51 metros de profundidade, cota -18,50m (ambos situados sob a estrutura do Tricktow Sul). E o ponto mais raso, que foi o SP1.1A, com 8,86 metros de profundidade e cota -5,86 m (situadas sob as estruturas Desnitrificador Norte). Este ponto se manteve como o mais raso da modelagem e atingiu cota igual ao valor real estabelecido no laudo de sondagem por percussão (até a segunda casa decimal).

O MDE gerado, utilizando do interpolador Krigagem, originou-se das coordenadas X, Y e Z extraídas do laudo de sondagem à percussão SPT, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde à cota de paralização do ensaio SPT.

Figura 19, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

Ainda que não seja possível identificar o pondo exato de cada um dos furos na modelagem gerada utilizando o interpolar Krigagem, assim como foi apresentado nas modelagens geradas pelo interpolador IDW. Percebe-se que os furos de sondagem percussiva SP1.1, SP1.1A, SP1.4 e SP2.9 paralisaram-se nas cotas mais rasas (fora da média) e continuam a gerar uma certa distorção da modelagem. Assim como os pontos SP2.5, SP2.7, SP2.2, SP2.1, que continuam sendo destaques na modelagem por terem alcançados cotas mais profundas.

A análise dos modelos gerados utilizando do interpolador Krigagem permitem continuar a inferir que houve algum tipo de erro (humano, executivo ou de equipamentos) durante a realização dos furos de sondagem SP1.1, SP1.1A, SP1.4 e SP2.9, visto que estes pontos estão localizados, foram realizados no mesmo dia e pelo mesmo operador, nas mesmas condições atmosféricas e não representam a cota do impenetrável (item verificado durante a cravação das estacas).

Sobre o ponto SM01 de amostragem por sondagem mista rotativa, abordado anteriormente, tal análise também continua válida, visto que a amostragem foi executada na mesma coordenada do furo SP1.1A e corrobora com a inferência de erro proposta, uma vez que o furo SM01 atingiu uma profundidade de 17,54 metros em solo, enquanto que o furo SP1.1A penetrou-se por apenas 8,86 metros.

Os demais pontos ensaiados mantiveram-se dentro de uma média e comportaram-se semelhantemente, embora a maioria destes não tenham representado a real profundidade da camada impenetrável do solo (item verificado durante a cravação das estacas). Utilizando o modelo gerado Krigagem percebe-se uma superfície mais suavizada (sem picos) no entanto, é possível perceber claramente zonas compostas por pontos que atingiram cotas rasas e pontos que atingiram altas profundidas.

Figura 19 – MDE da superfície sondada por SPT, gerado utilizando o interpolador Krigagem.

4.1.3 Interpolador Topo To Raster

Conforme mencionado no item anterior, o modelo digital de elevação gerado com a utilização do interpolador Topo to Raster apresenta superfície mais suaves, quando comparado ao interpolador IDW e bastante semelhante visualmente ao resultado obtido utilizando-se o interpolador por Krigagem.

Deve-se destacar, no entanto que este foi o único método que não mantevese restrito dentro dos valores de máxima e mínima profundidade obtidas pelos laudos de sondagem.

Conforme mencionado nas discussões anteriores, as maiores profundidades obtidas com os furos de sondagem foram: o SP2.5 = 21,69 metros de profundidade, cota -18,69m e SP2.7 = 21,51 metros de profundidade, cota -18,50m (ambos situados sob a estrutura do Tricktow Sul). No entanto, o MDE gerado utilizando-se o interpolador Topo to Raster alcança até a uma cota igual a -20,7964 metros. O que sugere um erro de 2,1064 metros.

O ponto mais raso, também apresentou erro, uma vez que o MDE varia entre -5,4757 metros e -20,7964 metros e o furo mais superficial obtido pela sondagem foi o SP1.1A, com 8,86 metros de profundidade e cota -5,86 m (situado sob as estruturas Desnitrificador Norte).

O MDE gerado, utilizando do interpolador Topo to Raster, originou-se das mesmas coordenadas X, Y e Z extraídas do laudo de sondagem à percussão SPT, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde à cota de paralização do ensaio SPT.

Na

Figura 20, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

Vale destacar que todas as análises e inferências colocadas no item anterior (interpolador Krigagem) continuam válidas e idênticas, para discutir as modelagens geradas utilizando-se o interpolar Topo to Raster.

Figura 20 – MDE da superfície sondada por SPT, gerado utilizando o interpolador Topo to Raster.

4.2 MODELAGEM DA SUPERFÍCIE DE ESTAQUEMENTO PROJETADO

Os modelos digitais gerados para a superfície projetada para assentamento das estacas, a partir dos dados extraídos no projeto de fundação e tratados por 3 diferentes interpoladores (IDW, Krigagem e Topo To Raster) são apresentadas a seguir subdivididos em tópicos, por interpolador.

Foi utilizada, para a modelagem, a situação mais crítica estabelecida em projeto, ou seja, nos casos em que o projeto previa variação na cota de assentamento das estacas foi adotado sempre a maior profundidade projetada. Assim, a cota prevista para o assentamento das estacas, manteve-se constante por estrutura, o que resultou em modelagens muito similares, para os diferentes interpoladores.

De acordo com o projeto de fundação da estrutura Tricktow Sul, o comprimento das estacas cravadas deveria variar entre 12 e 20 metros. Assim considerando que a cota do terreno natural encontra-se na cota 3 metros foi estabelecido que a cota máxima projetada para o assentamento das estacas desta estrutura é de -17 metros.

Para a estrutura Tanque Pulmão o comprimento máximo estabelecido para as estacas projetadas foi de 14 metros, o que evidencia uma previsão de assentamento na cota -11 metros. Para a estrutura Tricktow Norte o comprimento máximo estabelecido para as estacas projetadas foi de 13 metros, o que evidencia uma previsão de assentamento na cota -10 metros.

Para as estruturas Desnitrificador Sul e Desnitrificador Norte, os comprimentos máximos estabelecidos para as estacas projetadas foram de 10 e 11 metros, respectivamente, o que evidencia uma previsão de assentamento na cota -7 e - 8 metros, respectivamente. As estacas da estrutura Estação Elevatória de Serviço também foram projetadas para se assentarem na cota -7 metros.

Para as estruturas Casa de Química e Desidratação de Lodo, Tratamento Preliminar e Desinfecção UV o comprimento máximo estabelecido para as estacas projetadas foi de 9 metros, o que evidencia uma previsão de assentamento na cota -6 metros. Já as estruturas Subestação e Depósito de Produtos Químicos foram projetadas com estacas assentadas na cota – 5 metros.

Baseando-se nas cotas obtidas pelo SPT que variam entre -5,86m a -18,69m espera-se que as cotas obtidas com mobilização total de carga também fossem erráticas.

Portanto, é possível inferir que a variabilidade das cotas de assentamento das estacas estimadas pelo projetista tenha ocorrido seguindo tal preceito.

Ressalta-se, no entanto, que o projeto geotécnico de estacas indica uma provável cota de paralisação, porém, somente com a execução do elemento de fundação no solo, obtenção da respectiva nega e confirmação da estabilidade a partir de provas de carga é possível ter precisão na cota de assentamento das fundações.

O Apêndice 2 apresenta o relatório completo, com a locação e a cota prevista para cada uma das estacas de cada uma das estruturas da ETE Rio Tavares.

A seguir são apresentados os 3 modelos digitais criados, utilizando dos 3 interpoladores. Percebe-se que devido a homogeneidade nas cotas previstas para o assentamento das estacas nas diferentes estruturas, as modelagens resultantes são bastante similares não apresentando superfícies mais rugosas ou suavizadas, como foi o caso na análise das superfície de sondagem.

4.2.1 Interpolador IDW

O MDE foi gerado utilizando-se do interpolador IDW originou-se das coordenadas X, Y e Z extraídas do projeto de fundações, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota prevista para o assentamento da estaca.

Na

Figura 21, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

As estacas estimadas para as estruturas da ETE Rio Tavares possuem entre 8 e vinte metros de comprimento. Considerando que a cota natural do terreno é de 3,00 metros deve-se estabelecer que as cotas projetadas para o assentamento das estacas variam entre -5 e -17 metros.

As figuras apresentadas a seguir ilustram que o MDE gerado utilizando o interpolador IDW manteve, exatamente, dentro da faixa -5 e -17 metros conforme dados fornecidos ao software e que entre uma estrutura e outra a modelagem se liga por linhas praticamente retas, sugerindo que a ponderação empregada atuou localmente, praticamente não influenciando os pontos das estruturas vizinhas.

Figura 21 – MDE gerado utilizando o interpolador IDW.

4.2.2 Interpolador Krigagem

O MDE foi gerado utilizando-se do interpolador Krigagem originou-se, também, das coordenadas X, Y e Z extraídas do projeto de fundações, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota prevista para o assentamento da estaca.

Na

Figura 22, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

Considerando todos os dados expostos na discussão anterior, quanto a cota projetada das estacas, percebe-se nas imagens a seguir que o MDE gerado utilizando o interpolador Krigagem apresentou ligeiro desvio entre os valores de máximo e mínimo projetado, o que sugere que a ponderação empregada permitiu alguma influência entre pontos de estruturas vizinhas, tendendo a suavizar as regiões entre estruturas. Tal fato é melhor percebido observando a imagem C, a seguir, e comparando-a com as imagens de mesmo posição para os diferentes interpoladores.

A modelagem final manteve-se entre as cotas -4,98 e -17,28 metros, ligeiramente diferente dos valores de projeto.

Figura 22 – MDE gerado utilizando o interpolador Krigagem
4.2.3 Interpolador Topo To Raster

Dentre os modelos gerados para a superfície projetada para assentamento das estacas, o MDE gerado utilizando-se do interpolador Topo to Raster foi o que apresentou-se mais suavizado e que ao mesmo tempo apresentou maior desvio entre os valores fornecidos pelo projeto e a representação modelada.

Destaca-se que este MDE gerado utilizando-se do interpolador Topo to Raster, também, originou-se das coordenadas X, Y e Z extraídas do projeto de fundações, sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota prevista para o assentamento da estaca.

Na

Figura 23, a seguir, pode-se observar a superfície modelada, por diferentes ângulos, sendo: A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

Figura 23 – MDE gerado utilizando o interpolador Topo to Raster.

4.3 MODELAGEM DA SUPERFÍCIE RESISTENTE REAL, OBTIDA APÓS CRAVAÇÃO DAS ESTACAS

Os modelos digitais da superfície de assentamento das estacas cravadas, foram gerados a partir dos dados extraídos de cada boletim de cravação, tratados por 3 diferentes interpoladores (IDW, Krigagem e Topo To Raster) e estão apresentadas a seguir subdivididos em tópicos, por interpolador.

O Apêndice 2 apresenta o relatório completo, com a locação e a cota de assentamento de cada uma das estacas cravadas para cada das estruturas da ETE Rio Tavares.

Neste caso, como existe grande variabilidade dentre os valores de cota de assentamento das estacas, os interpoladores tiveram comportamentos bastante distintos, cada um de acordo com sua especificidade, gerando, portanto, MDEs diferentes.

4.3.1 Interpolador IDW

Após a interpolação dos dados referente a cota de assentamento das estacas cravadas (anexo 2) percebe-se que, novamente, o interpolador IDW a superfície mais rugosa e evidenciou os pontos máximos e mínimos, mantendo-se fiel às caraterísticas da ferramenta.

A modelagem apresentada na

Figura 24 foi construída empregando-se o interpolador IDW e utilizando-se das coordenadas X, Y e Z extraídas dos boletins de cravação das estacas (anexo 2), sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota de assentamento da estaca.

A modelagem evidencia claramente as estacas que alcançaram altos valores de profundidades. É o caso das estacas E10A situada sob a estrutura DUV, E66, E9 e E154 situadas sob a estrutura TRTWS, e as estacas E36A e E39A E10A situada sob a estrutura TPR. Destaca-se que foram realizados Teste De Integridade De Estacas (PIT) em cada uma destas estacas e todas as estacas testadas apresentaram íntegras, ou seja, essas estacas não se romperam ou desemendaram, apenas alcançaram grandes profundidas, o que sugere a presença de alguma peculiaridade geológica na área, por exemplo de uma fenda. Outro fator que corrobora com essa inferência é a proximidades das estacas que se apresentaram com profundidades bastante discrepantes.

Figura 24 – MDE gerado utilizando o interpolador IDW. A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

O MDE gerado apresenta os pontos de máxima profundidade (em vermelho) e de mínima profundidade (em azul) variando entre 0,8880 e -60,129 metros, o que indica uma certa tendência de elevação dos pontos, visto que o comprimento mínimo e máximo das estacas cravadas foram 7,20 e 68 metros, o que equivale as cotas de paralização da cravação entre -3,7 a -65 metros de profundidade.

Os pontos de máxima profundidade e mais discrepantes no MDE, são referentes as seguintes estacas e suas referidas cotas de paralização de cravação:

- E10A, assentada na cota -65 metros, sob a estrutura de Desinfecção UV (DUV);
- E66, assentada na cota -57 metros, sob a estrutura Tricktow Sul (TRTWS);
- E9, assentada na cota -53,70 metros, sob a estrutura Tricktow Sul (TRTWS);
- E154, assentada na cota -43,90 metros, sob a estrutura Tricktow Sul (TRTWS);
- E39A, assentada na cota -40,00 metros, sob a estrutura do Tratamento Preliminar (TPR);
- E36A, assentada na cota -37,00 metros, sob a estrutura do Tratamento Preliminar (TPR);
- E64, assentada na cota -34,50 metros, sob a estrutura Tricktow Sul (TRTWS) e;
- E373, assentada na cota -31,80 metros, sob a estrutura Tricktow Norte (TRTWN).

As estacas mais rasas de todo o empreendimento estão situadas sob a estrutura da casa de química e desidratação de lodo mecânico, sendo a cota mais rasa -3,7 metros.

4.3.2 Interpolador Krigagem

O interpolador Krigagem resultou na superfície mais suavizada, quando comparados os 3 interpoladores utilizados e ilustra a situação de maneira regional. É possível observar que a região oeste da área do empreendimento ETE Rio Tavares

apresentou sempre, indícios de que possui uma camada resistente mais superficial, que o lado Leste do terreno.

No entanto, numa análise comparativa visual percebe-se um alto grau de achatamento e distorção dos valores. Avaliando as cotas reais de paralização da cravação (-3,7 a -65 metros) e comparando-as com os valores de máxima (-27,34 m) e mínima (-5,45 m) profundidade ilustrados neste MDE percebe-se que este interpolador não representa fielmente a situação real de cravação.

Neste MDE não é possível perceber a real variabilidade de profundidas alcançadas pelas estacas cravadas ao longo desta obra.

A modelagem por Krigagem da superfície de paralização da cravação de estacas, apresentada na

Figura 25 foi construída assim como as demais, baseada nas coordenadas X, Y e Z extraídas dos boletins de cravação das estacas (anexo 2), sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota de assentamento da estaca.

Percebe-se que embora o interpolador Krigagem seja amplamente utilizado e considerado por muitos autores, o interpolador que melhor representado um conjunto de dados por meio de modelagem, neste caso, para o objetivo aqui proposto este interpolador não se mostrou o mais eficiente, pois não evidencia as discrepâncias entre estudo, projeto e execução. E portento não permite visualizar de forma ressaltada as possíveis falhas e consequentes prejuízos envolvidos.

Figura 25 – MDE gerado utilizando o interpolador Krigagem. A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

4.3.3 Interpolador Topo To Raster

O interpolador Topo to Raster, nesta modelagem se comportou similar ao IDW, de maneira menos expressiva, mas evidenciando as estacas que se assetaram em maiores profundidas e mantendo a faixa de valores de cotas (-1,5 e -60 metros) semelhante à faixa real de cotas de paralização de cravação das estacas (-3,7 a -65 metros).

Os pontos de máxima profundidade e mais discrepantes no MDE, são referentes as mesmas estacas já citadas no item 4.3.1.

A modelagem por Topo to Raster da superfície de paralização da cravação de estacas, apresentada na

Figura 26 foi construída assim como as demais, baseada nas coordenadas X, Y e Z extraídas dos boletins de cravação das estacas (anexo 2), sendo X e Y as coordenadas geodésicas em relação a latitude e longitude, já a coordenada Z corresponde a cota de assentamento da estaca. Figura 26 – MDE gerado utilizando o interpolador Topo to Raster. A imagem A = vista de Sudeste, B = vista de Leste, C= vista de Sudoeste e D = vista inferior de Nordeste.

4.4 ANÁLISE DA SITUAÇÃO

Comparando a cota máxima de atingimento do furo de sondagem com a cota de assentamento da estaca locadas na mesma coordenada geodésica ou das estacas locadas próximas percebe-se que:

- Dos 18 furos de sondagem executados 12 pararam acima da cota de assentamento real das estacas, ou seja, 67% dos ensaios realizados não previram a situação real do solo
- Um dos furos executados não possui estrutura executada próximo e, portanto, não foi avaliado individualmente;
- Apenas 5, dos 18 furos de sondagem executados atingiram cotas inferiores aos das estacas cravadas.

O Quadro 2 a seguir resume a comparativa exposta, sendo os valores realçados em vermelhos aqueles com previsão de camada impenetrável aquém da necessidade real, para a estrutura. Nos casos em que não houve estaca alocada na mesma coordenada geodésica que o furo de sondagem, foram utilizadas as estacas do entorno para estimativa da cota de assentamento média e posterior comparativa.

accontanto				a gecaboloa o		
Furo de	Cota do	Coordenadas	Coordenadas	Estaca	Cota de	Cota média
sondagem		geograficas	geograficas	próxima	da estaca	comparada com a
			-		15 60	Solidageili
004.4	0.70	000000 440	740054 4040	DN_70	-15,60	4.4.45
SP1.1	-6,79	6938829,112	746251,4912	DN_63	-15,25	-14,45
0.004.4.4	5.00	000007 500	740054.000	DN_69	-12,50	40.00
SP1.1A	-5,86	6938827,500	746254,900	DN_56	-16,80	-16,80
				DS_E18	-8,90	
SP1 2	-11 45	6938777 436	746253 7047	DS_E29	-8,85	-8.86
01 1.2	11,-10	0000777,400	140200,1041	DS_E24	-9,00	0,00
				DS_25	-8,70	
SP1.3	-11,35	6938802,995	746285,900	TPL_E17	-15,45	-15,45
SP1.3A	-11,58	6938802,995	746290,525	TPL_E21	-21,60	-21,60
SP1.4	-6,58	6938802,465	746264,854	TPR_E51	-14,80	-14,80
SP1.4B	-11,54	6938808,309	746239,147			sem correspondente
SD2 1	17.07	17.07 6039930.367	746000 650	PPQQ_E13A	-5,60	5 55
3F2.1	-17,07	0930029,307	740220,030	PPQQ_E13B	-5,50	-0,00
				CQD_E47	-8,00	
602.2	17.64	6020002 002	746000 609	CQD_E48	-8,80	0 60
352.2	-17,04	0930002,093	740220,090	CQD_E52	-8,85	-0,03
				CQD_E53	-8,85	
				SUB_E3	-9,30	
				SUB_E7	-8,00	-8,42
SP2.3	-15,57	6938763,189	746218,4504	SUB_E5	-9,60	
		,		SUB_E2	-9,20	
				SUB_E2A	-6,00	
SP2.4D	-14,89	6938777,464	746267,733	TRTWS_E153	-16,60	-16,60
SP2.5	-18,69	6938778,338	746286,103	TRTWS_E117	-21,00	-21,00
SP2.6	-15,55	6938787,826	746277,055	TRTWS_E79	-21,00	-21,00

Quadro 2 – Comparativa entre a cota máxima de atingimento do furo de sondagem com a cota de assentamento da estaca locadas na mesma coordenada geodésica ou das estacas locadas próximas.

Furo de sondagem	Cota do impenetrável ao SPT	Coordenadas geográficas N	Coordenadas geográficas E	Estaca próxima	Cota de assentamento da estaca	Cota média comparada com a sondagem
SP2.7	-18,51	6938769,715	746278,400	TRTWS_E194	-16,50	-16,50
SP2.8	-9,43	6938836,826	746277,055	TRTWN_E285	-10,00	-10,00
SP2.9	-6,34	6938827,464	746269,733	TRTWN_E326	-16,10	-16,10
SP2.10	-10,54	6938827,338	746286,103	TRTWN_E362	-23,00	-23,00
SP2.11	-9,86	6938818,715	746278,400	TRTWN_E403	-19,00	-19,00

É importante destacar que os pontos de sondagem que apresentaram resultados satisfatórios, ou seja, aqueles com o limite de perfuração não ultrapassado pelas estacas após cravação, apresentam características geológicas similares, como: maior concentração de areia, geralmente em camadas espessas e apresentam ganhos de resistência de forma contínua.

A Figura 27, a seguir, ilustram a localização de cada um dos furos de sondagem, sendo a primeira imagem uma locação do furo sobre a fotografia da obra e a segunda uma modelagem digital da superfície gerada com os dados da sondagem. Cada um dos pontos locados sobre a fotografia e realçado em vermelho corresponde a aqueles com previsão de camada impenetrável aquém da necessidade real, para a estrutura.

Percebe-se que os furos de sondagem locados sob as estruturas Desnitrificador Norte, Tricktow Norte, Tanque Pulmão, Tratamento Preliminar e 3 dos 4 pontos locados sob a estruturada do Tricktow Sul subestimaram a profundidade de atingimento das estacas cravadas.

Figura 27 – imagem A = locação dos pontos de sondagem sobre imagem da obra já em execução, possibilitando reconhecer cada ambiente e imagem B = modelagem da superfície a partir dos dados de sondagem

A análise isolada sobre a modelagem digital criada a partir dos valores previsto pela sondagem não possibilta a visualização de tal subestimativa, no entanto, já evidencia a falta de informação nas bordas da modelagem (falta pontos de sondagem no entorno imediado das estruturas), para melhor interpolação dos dados.

4.4.1 Comparativo entre a modelagens: Sondagem X Projeto X Executado

A análise isolada de cada uma das modelagens criadas e apresentadas anteriormente possibilita a visualização tridimensional do problema, mas não permite de forma clara, a visualização e a compreensão das discrepâncias ou similaridades entre elas. Portanto, neste subcapítulo serão apresentados os resultados obtidos após sobreposições de modelagens.

A imagem a seguir ilustra a modelagem estimada para a superfície resistente, criada a partir dos dados dos laudos de sondagem (superfície com coloração variando de verde a roxo) sobreposta pela superfície resistente, criada a partir das cotas previstas em projeto, para assentamento das estacas (superfície de coloração variando do marrom ao amarelo). A cota de assentamento real das estacas (após executada fundação) é representada por um ponto de coloração vermelha na base de cada escada ilustrada na imagem.

Figura 28 – Sobreposição da modelagem das estacas cravadas sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem.

Percebe-se que na porção Oeste do terreno (destaque na Figura 29), onde foram implantadas as estruturas: CQD, EES, PPQQ e SUB, apenas uma das estacas executadas ultrapassou a superfície criada pela modelagem dos dados fornecidos pelos laudos de sondagem. No entanto, as cotas de assentamento previstas em projeto (9 metros de profundidade) não se confirmaram, estando estas bem acima dos limites de sondagem e sendo ultrapassadas por diversas estacas durante a execução (média de 11,5 metros de profundidade).

Figura 29 – Sobreposição da modelagem das estacas cravadas, sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem.

Percebe-se que para as estruturas projetadas na porção Leste do terreno, as modelagens de sondagem e projeto se fundem, possibilitando inferir que para estas estruturas o projetista estabeleceu como cota de assentamento das estacas aquelas correspondentes ao impenetrável do SPT. No entanto, percebe-se que durante a execução da fundação, a maioria das estacas cravadas ultrapassaram este limite, principalmente as estacas das estruturas situadas a região nordeste do terreno (TRTWN e DN-norte).

De acordo com resultados apresentados pelos laudos de sondagens SPT e ilustrados na modelagem, a superfície resistente da região Nordeste (destaque na Figura 30) da área encontra-se entre as profundidades de 8,8 e 13,5 metros. No entanto, o comprimento médio das estacas cravadas nesta região é de 18,7 metros (com variação entre 9,6 e 34,8 metros), sendo: 6 estacas com comprimento superior a 30 metros de comprimento; 29 estacas com comprimento superior a 25 metros de comprimento; 83

estacas com comprimento superior a 20 metros de comprimento; 100 estacas com comprimento superior a 15 metros de comprimento; 33 estacas com comprimento superior a 13,5 metros de comprimento e; 8 estacas com comprimento inferior a 13,5 metros de comprimento.

Figura 30 – Sobreposição da modelagem das estacas cravadas sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem.

Ou seja, das 259 estacas cravadas para duas estruturas situadas a Nordeste da área, sendo 216 estacas cravadas para o Tricktow Norte e 43 estacas cravadas para o Desnitrificador Norte, apenas 8 estacas assentaram-se na superfície diagnosticada como impenetrável pelo SPT.

A

Figura 31 apresenta uma vista frontal da porção Leste do empreendimento, evidenciando o quão foram discrepantes a profundidade prevista e a profundidade real de assentamento das estacas cravadas.

Figura 31 – Sobreposição da modelagem das estacas cravadas, sobre a superfície modelada a partir dos dados de projeto e a superfície gerada a partir dos dados obtido nos laudos de sondagem.

Outro fato relevante e percebido, a partir da modelagem da superfície resistente, dada pela sondagem SPT é que os pontos SP1.1, SP1.4, SP2.9 e SP1.1A (Figura 32) apresentaram valores muito subestimados para a profundidade da camada naquela região (média de 9,3 metros).

Este fato levou a uma distorção da real situação e influenciou equívocos no projeto, visto que a superfície resistente projetada é coincidente com a superfície de sondagem naqueles pontos. Percebe-se ainda que essa foi a área com maior discrepância entre a situação projetada e executada do empreendimento.

Figura 32 – Pontos de sondagem SP1.1, SP1.4, SP2.9 e SP1.1A apresentaram valores muito subestimados para a profundidade da camada naquela região (9,3 metros).

É importante destacar que os laudos de sondagem referentes aos 4 furos destacados acima apresentam características geotécnicas similares, sendo: camadas

delgadas e intercaladas de areia (na maioria siltosa) e argila (mole a muito mole) com ganhos de resistência de forma abrupta.

Destaca-se ainda que, dentre as estacas cravadas para a obra de implantação do SES_ETE_Rio Tavares, 7 estacas alcançaram profundidas superiores a 35 metros de profundidade, reforçando a discrepância entre a superfície resistente dada pela sondagem SPT (com profundidade máxima alcançada de 21,69 metros) e a alcançada após execução da fundação, sugerindo a existência de pontos isolados do terreno, com menor resistência ao processo de cravação, o que pode ser resultado da deposição sedimentar aluvial de estruturas pontuais com decomposição diferenciada.

5 CONCLUSÃO

Conclui-se com este trabalho que é possível a utilização de modelagens digitais tridimensionais para a ilustração de superfícies impenetráveis, a partir de resultados de ensaios de sondagens a percussão e ou a partir dos resultados dos boletins de cravação das estacas. Abre-se caminho, ainda, pra ampliação das possibilidades de utilização nesta área.

Constatou-se neste trabalho que a utilização de diferentes interpoladores para elaboração de MDEs tende a resultar em modelagens diferentes, obedecendo o princípio de cada interpolador. Portanto, sugere-se o emprego de diferentes métodos de interpolação, para que se possa interpretar os resultados e avaliar qual o melhor interpolador para cada situação.

A partir das modelagens digitais criadas é possível visualizar e afirmar que as informações geotécnicas obtidas a partir do SPT não previram, em sua grande maioria, a real profundidade da camada impenetrável do solo. Sendo que a maioria das estacas cravadas durante a execução da obra ultrapassaram os limites estabelecidos nos laudos das sondagens percussivas realizadas.

Pode-se associar a incapacidade de previsão da cota de assentamento das estacas ao baixo investimento investigativo do subsolo. Enfatiza-se que foram realizados apenas três furos de sondagem Mista Rotativa e o número de sondagens SPT realizados foram 22, sendo 18 válidos. Considerando que a NBR 8036, não estabelece número de sondagens de referência para áreas acima de 2400 metros quadrados e adotando o valor de referência para áreas entre 1200 e 2400 de um furo de sondagem para cada 400 metros quadrados. Pode-se afirmar que 18 furos válidos não atende a norma existente.

Sugere-se, portanto, que em situações semelhantes sejam adotadas mais investigações geotécnicas, com ênfase para a sondagem mista rotativa, que permite um reconhecimento total ao logo de todas as camadas perfuradas, sendo estas: solos e ou rochas. A pose de melhores investigações geotécnicas, possivelmente, irá permitir a elaboração de modelos tridimensionais mais fiéis às áreas analisadas e que, consequentemente, permitirão melhores análises durante a fase de projeto.

Foi possível visualizar que, neste caso estudado, o projetista foi bastante fiel aos resultados da sondagem percussiva (SPT), estimando a paralização da cravação das estacas coincidentes com a cota impenetrável ao trépano de lavagem (dado pelos laudos SPT).

Conclui-se ainda que, na porção Oeste do terreno, onde foram implantadas as estruturas: CQD, EES, PPQQ e SUB o projetista foi mais audacioso. Muito provavelmente por serem estruturas menos solicitantes, foram estimadas estacas mais rasas que a cota de impenetrável dada pela sondagem. No entanto, a profundidade média alcançada pelas estacas foi de 11,5 metros enquanto que o projeto previa uma profundidade média de 9 metros. Além disso, para estas estruturas, apenas uma das estacas executadas ultrapassou a superfície criada pela modelagem dos dados fornecidos pelos laudos de sondagem.

Para as estruturas projetadas na porção Leste do terreno as modelagens de sondagem e projeto se fundem, possibilitando inferir que para estas estruturas o projetista estabeleceu como cota de assentamento das estacas aquelas correspondentes o impenetrável ao SPT. Desta vez, porém, percebe-se que durante a execução da fundação as estacas atingiram profundidades maiores que a projetada, em especial na região Nordeste do terreno, sob as estruturas Tricktow Norte e Desnitrificador Norte.

Pode-se inferir pelas análises das modelagens e demais dados apresentados ao longo desta pesquisa que os limites de penetração definidos nos laudos de sondagem para os furos 1.1, 1.1A, 1.4 e 2.9 foram responsáveis pela distorção da modelagem, subestimando a profundidade da camada resistente localmente e consequentemente provocando pontualmente a maior discrepância entre a condição projetada e a executada.

Pode ser acrescido ainda às conclusões desta pesquisa que, caso tivesse sido elaborado, ainda na fase de estudo geotécnicos da área, um MDE da superfície impenetrável a partir dos resultados da sondagem por percussão, este esforço pouco teria ajudado na interpretação e previsão da profundidade real de assentamento das estacas após a cravação. No entanto a análise de tal MDE, elaborada utilizando qualquer um dos interpoladores indica uma região com o impenetrável bastante raso, que sugere a necessidade de maiores investigações geotécnicas. A visualização das imagens 17-C, 18-C e 19-C (apresentadas nos itens 4.1.1, 4.1.2 e 4.1.3) permite a identificação da referida região (representada em azul).

Por fim, percebe-se que a modelagem tridimensional consegue ilustrar claramente a situação proposta e possibilita diversas análises, o que pode auxiliar nas tomadas de decisão em diferentes fases de qualquer empreendimento. E embora o interpolador Krigagem seja amplamente utilizado e considerado por muitos autores, o interpolador que melhor representado um conjunto de dados por meio de modelagem, neste caso, para o objetivo aqui proposto este interpolador não se mostrou o mais eficiente, pois não evidencia as discrepâncias entre estudo, projeto e execução. E portento não permite visualizar de forma ressaltada as possíveis falhas e consequentes prejuízos envolvidos.

Para a análise proposta por este trabalho o interpolador IDW ofereceu melhor resultado nas modelagens, deixando mais evidentes as discrepâncias dos dados ao longo de cada uma das fases da obra (estudo, projeto e execução). No geral este interpolador resultou em superfícies mais rugosas, permitindo maior ênfase aos valores discrepantes.

Por fim, sugere-se como trabalhos futuros a elaboração e comparação do cronograma físico e financeiro do sistema de fundação desta obra, visto que ficou claro a discrepância entre o comprimento de estacas previsto e o executado, assim será possível enfatizar o real custo de diagnósticos investigativos do subsolo, quando comparado aos gastos não previstos.

6 REFERÊNCIAS

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6122: Projeto e execução de Fundações. Rio de Janeiro, 2010

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6484**: Solo - Sondagens de simples reconhecimento com SPT - Método de ensaio. Rio de Janeiro, 2001.

Aoki, N. & Velloso, D. A. (1975). An Aproximate Method to Estimate the Bearing Capacity of Piles. Proceedings of the 5th Pan American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, vol. 1.

BALECH, Jean. ANÁLISE DA TRANSFERÊNCIA DE CARGA DE ESTACAS CRAVADAS EM ARGILA MOLE À PARTIR DE PROVAS DE CARGA DINÂMICA DE ENERGIA CRESCENTE. Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para a obtenção do Título de Mestre em Engenharia Civil: Geotecnia. Orientador: Prof. Dr. Nelson Aoki. São Carlos 2000.

Batista, A. P. B; Santos, G. R.;Mello, J. M.; Silva, K. E.; Kaleita, A. **GEOESTATÍSTICA NO R: UM ESTUDO COMPARATIVO ENTRE DOIS SCRIPTS**. IV Simpósio de Geoestatística Aplicada em Ciências Agrárias Botucatu, São Paulo. 14 e 15 de Maio de 2015.

BERBERIAN, Dickran. Sondagens e ensaios in sito para engenharia, 2012.

CAVALCANTE, Erinaldo Hilário. Investigação Teórico-Experimental Sobre
o SPT. Rio de Janeiro. Tese - Universidade Federal do Rio de Janeiro, COPPE/UFRJ,
D.Sc., Engenharia Civil, 2002.

CHIN, F.K. Estimation of the ultimate load of piles not carried to failure. In: **SOUTHEAST ASIAN CONFERENCE ON SOIL ENGINNERGING**, 2. Proceedings.... p.81-90, 1970.

CINTRA, C. A.; AOKI, N.; TSUHA, C. H. C.; GIACHETI, H. L.. Fundações: Ensaios Estáticos e Dinâmicos. 1ª ed. São Paulo: Oficina de Textos, 2013. CINTRA, J. C. A; AOKI, N.. Fundações por Estacas: projeto geotécnico. São Paulo: Oficina de Textos, 4ªreimpressão, 2018.

CPRM - Companhia de Pesquisa de Recursos Minerais.GLOSSÁRIOGEOLÓGICOILUSTRADO.Disponívelem:<http://sigep.cprm.gov.br/glossario/index.html>.Acesso em: 16 de novembro de 2018.

DÉCOURT, L. & QUARESMA, A. R., (1978). Capacidade de Carga de Estacas a partir de valores de SPT. Anais do 6º COBRAMSEF, Rio de Janeiro, vol. 1, p. 45-53.

DÉCOURT, L. A ruptura de fundações avaliada com base no conceito de rigidez. In: SEFE – SEMINÁRIO DE ENGENHARIA DE FUNDAÇÕES ESPECIAIS E GEOTECNIA, 3., 1996, São Paulo. 1996. v. 1, p. 215-224.

DO CARMO, Edilson José; RODRIGUES, Dalto Domingos; DOS SANTOS, Gerson Rodrigues. **AVALIAÇÃO DOS INTERPOLADORES KRIGAGEM E TOPO TO RASTER PARA GERAÇÃO DE MODELOS DIGITAIS DE ELEVAÇÃO A PARTIR DE UM "AS BUILT"**. Boletim de Ciências Geodésicas, [S.I.], v. 21, n. 4, dez. 2015. ISSN 1982-2170. Disponível em: https://revistas.ufpr.br/bcg/article/view/44378>. Acesso em: 10 abr. 2019.

EL-SHEIMY, N.; VALEO, C.; HABIB, A. **Digital Terrain Modeling:** Acquisition, Manipulation, and Applications. Boston/ EUA. Artech House. 2005. 270p.

EL-SHEIMY, N.; VALEO, C.; HABIB, A. **Digital Terrain Modeling:** Acquisition, Manipulation, and Applications. Boston/ EUA. Artech House. 2005. 270p.

FOLLE, D. O estudo geoestatístico de sondagens SPT para geração de mapas auxiliares em obras de engenharia. Dissertação (Mestrado em Engenharia) -Escola de Engenharia, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre. 2002. GIACOMIN, G.; DE CARVALHO, M.; SANTOS, A.; MEDEIROS, N.; FERRAZ, A. ANÁLISE COMPARATIVA ENTRE MÉTODOS INTERPOLADORES DE MODELOS DE SUPERFÍ• CIES. **Revista Brasileira de Cartografia**, v. 66, n. 6, 30 dez. 2014.

GONÇALVES, C.; BERNARDES, G.P. DE; NEVES, L.F.S. Estacas préfabricadas de concreto: Quebras, Vibrações e ruídos. 1ª Ed. São Paulo. Multpress, 2009.

HANSEN, J.B. Discussion of Hyperbolic stress-strain response: Cohesive Soils. JSMFD, ASCE, v. 89, n° SM4, p. 241-242, 1963.

KLENK, G.; RUSSO NETO, L.. ANÁLISE DA CRAVABILIDADE DE ESTACAS ATRAVÉS DE SIMULAÇÕES COMPUTACIONAIS COM USO DA TEORIA DA PROPAGAÇÃO DA ONDA Revista Técnico-Científica do CREA-PR - ISSN 2358-5420 – Ed. Especial. Curitiba. Setembro de 2017.

LABORATÓRIO DE GEOMÁTICA. **PMI 3331 – GEOMÁTICA APLICADA À ENGENHARIA DE PETRÓLEO**. Universidade de São Paulo Escola Politécnica Departamento de Engenharia de Minas e de Petróleo – PMI Graduação em Engenharia de Petróleo. 2016. Disponível em:

<https://edisciplinas.usp.br/pluginfile.php/2027283/mod_resource/content/0/PMI3331%2 0-MDE.pdf>. Acesso em: 12 de abril de 2019.

LANDIM, P.M.B. Introdução aos métodos de estimação espacial para confecção de mapas. DGA, IGCE, UNESP/Rio Claro, Lab. Geomatemática,Texto Didático 02, 20 pp. 2000. Disponível em http://www.rc.unesp.br/igce/aplicada/textodi.html.

MARANGON, M. Unidade 03 INVESTIGAÇÃO GEOTÉCNICA E PARÂMETROS PARA FUNDAÇÕES. Geotecnia de Fundações e Obras de Terra -2018. Disponível em: http://www.ufjf.br/nugeo/files/2017/07/GEF03-Investiga%C3%A7%C3%B5es-2018.pdf>. Acesso em: 15 de novembro de 2018.

MARCUZZO, F. F. N.; ANDRADE, L. R. D.; MELO, D. C. R. Métodos de Interpolação Matemática no Mapeamento de Chuvas do Estado do Mato Grosso. Revista Brasileira de Geografia Física, v. 4, n. 4, p. 793-04, 2011. ISSN 194-2295. MASSAD, F. Notes on the interpretation of failure load from routine pile load tests. Solos e Rochas, São Paulo, v. 9, n. 1, p. 33-36, 1986.

MAZURKIEWICZ, B.K. Test loading of piles according to Polish regulations, Preliminary Report n° 35, Commission on Pile Research, royal Swedish Academy of Engineering Sciences, Stockholm, 1972.

Medeiros, A. **Qual é a Diferença entre MDE, MDT e MDS?** ClickGeo Cursos de Geotecnia. 2019. Disponível em: http://www.clickgeo.com.br/qual-e-adiferenca-entre-mde-mdt-e-mds/. Acesso em 12 de abril de 2019.

MEDRANO, M. L. O. **Avaliação de métodos dinâmicos baseados em nega e repique elástico**. 230 p. Dissertação (Mestrado em Geotecnia) – Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, SP, 2014.

MELLO, V.F.B.; SOBRAL, A.C.S. Fundações por estacas: previsões e controles tradicionais reapreciados mediante estatística. In: **6° Congresso Nacional de Geotecnia, Sociedade Portuguesa de Geotecnia**, v. 2, Lisboa, 1997.

MILITITSKY, J. **Provas de carga estáticas**. Palestra proferida no 2° Seminário de Engenharia de Fundações Especiais, ABEF/ABMS, São Paulo, 1991. v. 2, p. 203-228.

MOHR, H.A. **Discussion on "Standard Penetration Test: Its Use and Abuse",** Journal of the Soil Mechanics and Foundation Division – ASCE – vol. 92, n. SM1, 1966.

MONTEIRO, F. F.; MOURA, A. S.; AGUIAR, M. F. P.; CUNHA, R. P.; MATOS, Y. M. P.; **Avaliação do Método de Van Der Veen para estimativa das cargas de ruptura em estacas raiz da cidade de Fortaleza**. XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica Geotecnia e Desenvolvimento Urbano. COBRAMSEG 2018, Salvador, Bahia, Brasil. Disponível em: <https://www.researchgate.net/publication/327477083_Avaliacao_do_Metodo_de_Van_ Der_Veen_para_estimativa_das_cargas_de_ruptura_em_estacas_raiz_da_cidade_de_ Fortaleza>. Acesso em 20 de maio de 2019. PUC-RIO. Investigação Geotécnica. Certificação digital n 1312973/CA. Disponível em:<https://www.maxwell.vrac.puc-rio.br/26066/26066_5.PDF>. Acesso em: 16 de novembro de 2018.

REBELLO, Y. C. P. Fundações: guia prático de projeto, execução e dimensionamento. 3. ed. São Paulo: Ed. Zigurate, 2011. 239 p. ISBN 978-8585570-10-1

REBELLO, YOPANAN.C.P. Fundações - Guia Prático de Projeto, Execução e Dimensionamento. São Paulo. Editora: Zigurate. 4 edição. 2008.

ROCHA, Hugo Cássio. Riscos na contratação de sondagem: depoimento. [julho, 2011]. [S. I.]: **Fundações e Contenções**. Entrevista concedida a Eduardo Campos Lima. Disponível em: http://infraestruturaurbana.pini.com.br/solucoes-tecnicas/5/riscosnacontratacao-de-sondagem-224633-1.aspx>. Acesso em: 15 de novembro de 2018.

SANEPAR - Companhia de Saneamento do Paraná. **Prescrições para** elaboração e apresentação de projetos básicos geotécnicos e serviços de ensaios e sondagens - especificações gerais. Manual de projetos de saneamento. Revisão 4. 2017. Disponível em: http://site.sanepar.com.br/sites/site.sanepar.com.br/sites/site.sanepar.com.br/files/ informacoes-tecnicas/mps-versao2017/modulo_5_prescricoes_para_elaboracao_e_ apresentacao_de_projetos_basicos_geotecnicos_-_sondagens.pdf>. Acesso em: 20 de outubro de 2018.

SCHNAID, F.; ODEBRECHt, E. Ensaios de campo e suas aplicações à Engenharia de Fundações. São Paulo: 2ed Oficina de Textos. 2012.

SEINCO. PROJETO EXECUTIVO DA ESTAÇÃO DE TRATAMENTO DE ESGOTO DO RIO TAVARES RELATÓRIO DE FUNDAÇÕES - Completo // Sexta revisão (v07). Ref. 5829. Março de 2017.

SILVA, Fábio Krueger da. CARACTERIZAÇÃO FÍSICA E MECÂNICA DE SOLO RESIDUAL DE GNAISSE POR MEIO DE ENSAIOS DE CAMPO E LABORATÓRIO - SANTO AMARO DA IMPERATRIZ, SANTA CATARINA. 2015. 452 f. Tese (Doutorado) - Curso de Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 2015. SOARES, M.M.; DIAS, C.R.R. Previsão do comportamento de estacas instaladas em argila. VIII COBRAMSEF. Vol. 6. p. 35-61. 1986.

STEIL, M. **Fundações**. Notas de aula. Instituto Federal de Santa Catarina. 2018.

TALAMINI NETO, Edmundo. Caracterização geotécnica do subsolo de Curitiba para o planejamento de ocupação do espalho subterrâneo. 2001. 223 f. Dissertação (Mestrado em Geotecnia) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 2001.

TÉCHNE PINI. Veja os cuidados na execução de fundações com estacas de concreto pré-fabricadas. 2016. Disponível em: ">https://techne.pini.com.br/2016/01/veja-os-cuidados-na-execucao-de-fundacoes-com-estacas-de-concreto-pre-fabricadas/>. Acesso em:01 de outubro de 2018.

THIESEN, Stephanie. Aplicação de ferramenta SIG para mapeamento geotécnico e cartas de aptidão para fundação a partir de ensaios SPT: um estudo de caso em Blumenau/SC. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis. 2016.

TOMAZOLLI, E. & PELLERIN, J. R. G. M. Mapa geológico da Ilha de Santa Catarina. 1a Edição. Publicação digitalizada. Mapa. 2014. Disponível em: http://lmo.ufsc.br/files/2014/08/Geolog_Ilha7.pdf. Acessado em 2 de setembro de 2018.

TSCHEBOTARIOFF, G.P. Fundações, Estruturas de Arrimo e Obras de Terra. Editora McGraw Hill, pp. 520, 1978.

VAN DER VEEN, C. The bearing Capacity of a pile. In: **INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING**, 3., 1953, Zurich. Proceedings...ISSMFE, 1953. v. 2, p. 84-90.

VELLOSO, D. A.; LOPES, F.R. **Fundações**. Rio de Janeiro: COPPE-UFRJ, 2002. v. 2.

VELLOSO, D. de A.; LOPES, F. de R.. Fundações : critérios de projeto, investigação do subsolo, fundações superficiais, fundações profundas, 1^a Ed., Oficina de Textos, São Paulo. 2010.

VELLOSO, D; LOPES, F. Concepções de obras de fundações. **In: Fundações Teoria e Prática**. Ed. Pini, 1ª. Ed., 1998.

VELLOSO, Dirceu de A.; LOPES, Francisco de R.– **Fundações - critérios de projeto, investigação do subsolo, fundações superficiais, fundações profundas**. São Paulo: Oficina de Textos, 2011.

VIEIRA, F. P. Critério estatístico para obtenção de valores de NSPT para previsão da capacidade de carga de estacas por métodos semi–empíricos. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. Rio de Janeiro, 2015. Disponível em:<file:///C:/Users/Avell/Desktop/ENG.%20CIVIL/TCC/Biblioteca/NSPT_SemiEmpirico _Vieira.pdf>. Acesso em 13 de outubro de 2018.

7 APÊNDICES

7.1 APÊNDICE 3 - INFORMAÇÕES PARA CRIAÇÃO DO MDE, A PARTIR DA SONDAGEM EXECUTADA.

Furo de Sondagem	Cota do Impenetrável ao Spt	Coordenadas Geográficas (N) / (Y)	Coordenadas Geográficas (E) / (X)
SP1.1	-6,79	6938829,112	746251,491
SP1.1A	-5,86	6938827,500	746254,900
SP1.2	-11,45	6938777,436	746253,705
SP1.3	-11,35	6938802,995	746285,900
SP1.3A	-11,58	6938802,995	746290,525
SP1.4	-6,58	6938802,465	746264,854
SP1.4B	-11,54	6938808,309	746239,147
SP2.1	-17,07	6938829,367	746220,650
SP2.2	-17,64	6938802,893	746220,698
SP2.3	-15,57	6938763,189	746218,450
SP2.4D	-14,89	6938777,464	746267,733
SP2.5	-18,69	6938778,338	746286,103
SP2.6	-15,55	6938787,826	746277,055
SP2.7	-18,51	6938769,715	746278,400
SP2.8	-9,43	6938836,826	746277,055
SP2.9	-6,34	6938827,464	746269,733
SP2.10	-10,54	6938827,338	746286,103
SP2.11	-9,86	6938818,715	746278,400

7.2 APÊNDICE 2 - INFORMAÇÕES PARA CRIAÇÃO DOS MDES, A PARTIR DA FUNDAÇÃO PROJETADA E DA FUNDAÇÃO EXECUTADA.

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
CQD	17A	6938784,45	746215,25	-3,70	-6
CQD	6B	6938775,15	746215,65	-4,20	-6
CQD	33a	6938792,75	746216,00	-4,30	-6
CQD	18	6938784,15	746216,00	-4,40	-6
CQD	32	6938792,40	746215,25	-4,40	-6
CQD	41a	6938796,65	746220,35	-4,55	-6
CQD	41b	6938796,65	746219,65	-4,65	-6
CQD	33b	6938792,05	746216,00	-4,80	-6
CQD	6A	6938775,15	746216,35	-5,00	-6
CQD	5	6938775,15	746215,25	-5,20	-6
CQD	17B	6938783,80	746215,25	-5,20	-6
CQD	56	6938805,15	746228,75	-6,85	-6
CQD	68	6938813,40	746225,30	-7,00	-6
CQD	26	6938788,65	746220,00	-7,22	-6
CQD	44	6938796,90	746224,00	-7,30	-6
CQD	15	6938779,65	746224,00	-7,50	-6
CQD	69	6938814,15	746225,30	-7,63	-6
CQD	29	6938788,65	746224,50	-7,73	-6
CQD	41	6938796,65	746220,00	-7,80	-6
CQD	66	6938814,15	746222,70	-7,88	-6
CQD	20	6938784,15	746223,25	-7,90	-6
CQD	37	6938792,40	746228,75	-7,90	-6
CQD	57	6938809,65	746219,25	-7,90	-6
CQD	58	6938809,65	746220,00	-7,90	-6
CQD	31	6938789,15	746228,00	-7,92	-6
CQD	36	6938792,40	746228,00	-7,93	-6

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
CQD	4	6938770.65	746224.50	-8.00	-6
CQD	9	6938775,15	746224,00	-8,00	-6
CQD	28	6938788,65	746223,50	-8,00	-6
CQD	43	6938796,15	746224,00	-8,00	-6
CQD	47	6938800,65	746219,50	-8,00	-6
CQD	50	6938800,65	746228,50	-8,00	-6
CQD	55	6938805,15	746228,00	-8,00	-6
CQD	59	6938809,65	746220,75	-8,00	-6
CQD	65	6938813,40	746222,70	-8,00	-6
CQD	70	6938814,90	746225,30	-8,00	-6
CQD	72	6938814,65	746228,00	-8,00	-6
CQD	25	6938787,90	746220,00	-8,13	-6
CQD	27	6938789,40	746220,00	-8,17	-6
CQD	42	6938795,40	746224,00	-8,20	-6
CQD	30	6938788,15	746228,00	-8,30	-6
CQD	21	6938784,15	746224,00	-8,35	-6
CQD	10	6938775,15	746224,75	-8,40	-6
CQD	62	6938809,65	746228,75	-8,40	-6
CQD	54	6938805,15	746227,25	-8,48	-6
CQD	16	6938779,65	746224,75	-8,60	-6
CQD	49	6938800,65	746227,50	-8,60	-6
CQD	61	6938809,65	746228,00	-8,60	-6
CQD	63	6938813,65	746220,00	-8,60	-6
CQD	3	6938770,65	746223,50	-8,63	-6
CQD	14	6938779,65	746223,25	-8,70	-6
CQD	33	6938792,40	746216,00	-8,70	-6
CQD	8	6938775,15	746223,25	-8,75	-6
CQD	71	6938813,65	746228,00	-8,76	-6
CQD	45	6938796,15	746227,50	-8,80	-6
CQD	48	6938800,65	746220,50	-8,80	-6
CQD	60	6938809,65	746227,25	-8,80	-6
CQD	67	6938814,90	746222,70	-8,80	-6
CQD	46	6938796,15	746228,50	-8,83	-6
CQD	22	6938784,15	746224,75	-8,85	-6
CQD	52	6938805,15	746220,00	-8,85	-6
CQD	53	6938805,15	746220,75	-8,85	-6
CQD	51	6938805,15	746219,25	-8,87	-6
CQD	35	6938792,40	746227,25	-8,88	-6
CQD	64	6938814,65	746220,00	-9,00	-6
CQD	17	6938784,15	746215,25	-9,80	-6
CQD	6	6938775,15	746216,00	-10,00	-6
CQD	7	6938775,15	746216,75	-14,60	-6
CQD	34	6938792,40	746216,75	-14,80	-6
CQD	1	6938770,65	746215,50	-14,90	-6
CQD	11	6938779,65	746215,25	-15,00	-6
CQD	12	6938779,65	746216,00	-15,00	-6
CQD	19	6938784,15	746216,75	-15,00	-6
CQD	23	6938788,65	746215,50	-15,00	-6
CQD	24	6938788,65	746216,50	-15,20	-6
CQD	39	6938796,65	746216,00	-15,30	-6
	40	6938795,65	746220,00	-15,30	-6
	2	6938770,65	746216,50	-15,60	-6
	13	6938779,65	746216,75	-15,60	-6
	38	6938795,65	/46216,00	-15,70	-6
DN_norte	38	6938821,88	/46254,90	-9,80	-/
DN_norte	40A	6938823,63	746252,90	-12,00	-/
DN_norte	56a	6938826,50	/46254,90	-12,40	-/
DN_norte	69	6938830,31	746252,09	-12,50	-/
DN_norte	40	6938822,63	746252,90	-13,00	-/
DIN_norte	/3	6938832,37	746252,09	-13,10	-/
DIN_norte	51	6938826,09	746252,09	-13,30	-/
I UN NORTE	62	0938826.09	(46254.90	-13.50	-/

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
DN norte	67	6938830.31	746254.90	-13.60	-7
DN norte	47	6938824,69	746252,09	-13,65	-7
DN_norte	68	6938830,31	746253,49	-14,00	-7
DN_norte	38B	6938822,88	746254,90	-14,00	-7
DN_norte	56b	6938828,50	746254,90	-14,00	-7
DN_norte	72	6938832,37	746257,71	-14,10	-7
DN_norte	64	6938830,31	746259,77	-14,20	-7
DN_norte	40B	6938821,63	746252,90	-14,60	-7
DN_norte	66	6938830,31	746256,31	-14,90	-7
DN_norte	71	6938831,72	746254,90	-14,90	-7
DN_norte	41	6938823,28	746254,90	-15,00	-7
DN_norte	48	6938824,69	746250,03	-15,20	-7
DN_norte	74	6938833,13	746254,90	-15,20	-7
DN_norte	63	6938826,09	746252,09	-15,25	-7
DN_norte	59	6938827,50	746250,68	-15,30	-7
DN_norte	61	6938826,09	746257,71	-15,30	-7
DN_norte	50	6938826,09	746254,90	-15,40	-7
DN_norte	45	6938824,69	746254,90	-15,50	-7
DN_norte	70	6938830,31	746250,03	-15,60	-7
DN_norte	55	6938827,50	746256,31	-15,70	-7
DN_norte	46	6938824,69	746253,49	-15,80	-7
DN_norte	65	6938830,31	746257,71	-15,90	-7
DN_norte	38A	6938820,88	746254,90	-16,30	-7
DN_norte	56	6938827,50	746254,90	-16,80	-7
DN_norte	43	6938824,69	746257,71	-17,00	-7
DN_norte	44	6938824,69	746256,31	-17,10	-7
DN_Norte	53	6938827,50	746259,12	-17,80	-7
DN_norte	39	6938822,63	746257,71	-19,00	-7
DN_norte	42	6938824,69	746259,77	-19,60	-/
DN_Norte	52	6938827,50	746260,53	-20,10	-/
DN_norte	60	6938827,50	746249,28	-20,30	-/
DN_norte	57	6938827,50	746253,49	-21,60	-/
DN_norte	49	6938826,09	746257,71	-22,20	-/
DN_norte	50	60390027,50	740252,09	-23,00	-/
DN_none	20	6029775 60	740257,71	-23,60	-7
DN_sul	30	6029774.29	740204,90	-0,20	-0
DN_sul		6029791 21	740252,09	-0,40	-0
DN_sul	10	6029777.00	740257,71	-0,50	-0
DN_sul	20	6038772 88	740257,71	-8,50	-0
DN sul	27	6038775.60	740254,90	-0,50	-0
DN_sul	21	6038775.60	740250,05	-8,60	-0
DN sul	1/	6038770.01	740250,51	-8,65	-0
DN_sul	12	6938779.91	746252.08	-8,05	-0
DN_Sul	21	6938778.50	746257,00	-8,70	-8
DN sul	25	6938777 09	746254.90	-8 70	-8
DN sul	32	6938775 69	746257 71	-8 70	-8
DN sul	17	6938778 50	746252.09	-8 75	-8
DN sul	36	6938773.63	746257 71	-8 75	-8
DN sul	23	6938778 50	746260.53	-8.80	-8
DN sul	28	6938775.69	746252.09	-8,80	-8
DN sul	33	6938775.69	746259.77	-8.80	-8
DN sul	16	6938778.50	746250.68	-8.85	-8
DN sul	29	6938775.69	746253.49	-8.85	-8
DN sul	35	6938773.63	746254.90	-8.85	-8
DN sul	20	6938778.50	746256.31	-8.86	-8
DN sul	8	6938781.31	746254.90	-8,90	-8
DN sul	18	6938778,50	746253,49	-8,90	-8
DN_sul	9	6938781.31	746256.31	-8,95	-8
DN_sul	11	6938781,31	746259,77	-8,95	-8
DN_sul	13	6938779.91	746254.90	-8,95	-8
DN sul	2	6938783.37	746252.09	-9.00	-8

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas F	Cota Assentamento	Cota MAX. Assentamento
DN sul	3	6938783.37	746257 71	-9.00	-8
DN sul	4	6938782.72	746254.90	-9,00	-8
DN sul	5	6938781.31	746250.03	-9.00	-8
DN sul	6	6938781.31	746252.09	-9.00	-8
DN sul	7	6938781.31	746253.49	-9.00	-8
DN sul	15	6938778,50	746249.26	-9.00	-8
DN_sul	19	6938778,50	746254,90	-9,00	-8
DN_sul	22	6938778,50	746259,12	-9,00	-8
DN_sul	24	6938777,09	746252,09	-9,00	-8
DN_sul	1	6938784,13	746254,90	-9,10	-8
DUV	10B	6938803,88	746272,50	-10,80	-6
DUV	7	6938800,94	746269,10	-11,40	-6
DUV	5	6938798,80	746269,10	-11,45	-6
DUV	12	6938805,42	746272,50	-12,50	-6
DUV	9	6938803,08	746269,10	-13,00	-6
DUV	14	6938807,76	746272,50	-13,25	-6
DUV	11	6938805,42	746269,10	-14,00	-6
DUV	13	6938807,76	746269,10	-14,00	-6
DUV	3	6938797,30	746269,10	-18,20	-6
DUV	1	6938796,00	746269,10	-18,60	-6
DUV	4	6938797,30	746272,50	-20,00	-6
DUV	2	6938796,00	746272,50	-20,30	-6
DUV	8	6938800,94	746272,50	-20,48	-6
DUV	6	6938798,80	746272,50	-20,67	-6
DUV	10	6938803,08	746272,50	-26,30	-6
DUV	10A	6938802,72	746272,50	-65,00	-6
EES	8	6938800,65	746220,50	-8,40	-/
EES	2	6938796,90	746224,00	-8,78	-/
EES	3	6938796,15	746227,50	-8,80	-/
	5	6938795,40	746224,00	-8,82	-/
EES	5	6029706 15	746227,50	-0,03	-/
	4	6029706 15	740224,00	-0,00	-7
	0	6038800.65	740220,50	-9,00	-7
PPOO	15	6038830 75	740219,50	-9,00	-7
PPOO	18	6938832.25	746217,55	-5,20	-5
PPOO	10	6938832.25	746220.65	-5,30	-5
PPOO	25	6938833 75	746223,65	-5.30	-5
PPQQ	22	6938833.75	746219.10	-5,40	-5
PPQQ	21	6938833.75	746217.55	-5,45	-5
PPQQ	12	6938829,25	746217.55	-5,50	-5
PPQQ	24	6938833.75	746222.15	-5.50	-5
PPQQ	13B	6938829,55	746220,65	-5,50	-5
PPQQ	23	6938833,75	746220,65	-5,60	-5
PPQQ	13A	6938829,25	746220,65	-5,60	-5
PPQQ	20	6938832,25	746223,65	-5,70	-5
PPQQ	2	6938824,75	746219,10	-5,75	-5
PPQQ	16	6938830,75	746220,65	-6,00	-5
PPQQ	1	6938824,75	746217,55	-6,23	-5
PPQQ	17	6938830,75	746223,65	-6,40	-5
PPQQ	3	6938824,75	746220,65	-7,00	-5
PPQQ	4	6938824,75	746222,15	-8,00	-5
PPQQ	10	6938827,75	746220,65	-8,00	-5
PPQQ	14	6938829,25	746223,65	-8,00	-5
PPQQ	6	6938826,25	746217,55	-11,60	-5
PPQQ	9	6938827,75	746217,55	-11,90	-5
PPQQ	5	6938824,75	746223,65	-12,70	-5
PPQQ		6938826,25	/46220,65	-13,10	-5
PPQQ	11	6938827,75	/46223,65	-13,60	-5
	8	6938826,25	746223,65	-14,20	-5
	2A 10	0930/0U,/0 6029761 25	7/62/15	-0,00	-5 5
300	10	0300/01.00	140/10.90	-0./U	-:)

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas F	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
SUB	9A	6938760.75	746215.93	-6.70	-5
SUB	4	6938764.65	746224.08	-7.30	-5
SUB	12	6938764.65	746215.93	-7.74	-5
SUB	8	6938764,43	746221,48	-7,87	-5
SUB	11	6938763,85	746215,93	-7,93	-5
SUB	7	6938764,43	746220,68	-8,00	-5
SUB	9	6938760,55	746215,93	-8,17	-5
SUB	2	6938760,78	746223,50	-9,20	-5
SUB	6	6938760,78	746221,48	-9,20	-5
SUB	3	6938763,85	746224,08	-9,30	-5
SUB	1	6938760,78	746224,30	-9,40	-5
SUB	5	6938760,78	746220,68	-9,60	-5
TPL	16B	6938802,20	746284,74	-12,50	-11
TPL	8	6938805,31	746285,90	-14,80	-11
TPL	16A	6938803,80	746284,74	-15,00	-11
TPL	17	6938803,00	746285,90	-15,45	-11
TPL	13	6938803,00	746281,28	-15,60	-11
TPL	18	6938803,00	746287,06	-15,60	-11
TPL	15	6938803,00	746283,59	-15,80	-11
TPL	14	6938803,00	746282,43	-16,00	-11
TPL	11	6938804,77	746281,63	-16,40	-11
TPL	6	6938805,31	746283,59	-17,00	-11
TPL	24	6938800,69	746283,59	-17,00	-11
TPL	22	6938801,23	746281,63	-17,10	-11
TPL	29	6938799,73	746282,63	-17,30	-11
IPL	31	6938798,73	746284,13	-17,50	-11
TPL	19	6938803,00	746288,21	-18,50	-11
	16	6938803,00	746284,74	-18,54	-11
	20	6938803,00	746289,37	-18,60	-11
	4	6938806,27	746282,63	-18,72	-11
	2	6938807,27	746284,13	-19,09	-11
	1	6938807,62	746285,90	-19,30	-11
	33	6938798,37	746285,90	-19,40	-11
	/	6028805.31	740204,74	-19,50	-
	9	6028804 77	740207,00	-20,20	-
	12	6020007.02	740290,14	-20,40	-11
	22	6029709 72	740203,30	-20,00	-11
	5	6028906.27	740207,07	-20,70	-11
	10	6038805 31	740209,17	-21,00	-11
	21	6038803.00	740200,21	-21,00	-11
	21	6938807.27	740290,52	-21,00	-11
TPI	25	6938800 69	746284 74	-22,00	-11
TPI	26	6938800.69	746285.90	-22,10	-11
TPL	27	6938800.69	746287.06	-22,50	-11
TPL	28	6938800.69	746288.21	-22.80	-11
TPL	30	6938799.73	746289.17	-23.00	-11
TPL	23	6938801.23	746290.17	-23.50	-11
TPL	2B	6938807.51	746284.84	-25.00	-11
TPR	49	6938801.35	746266.35	-6.00	-6
TPR	43	6938801.35	746264.00	-6.30	-6
TPR	46	6938801.80	746265.70	-6,40	-6
TPR	21	6938804.65	746258.50	-7,00	-6
TPR	45	6938801,26	746266,35	-7,00	-6
TPR	47	6938802,18	746264,00	-7,00	-6
TPR	48	6938801,35	746265,05	-7,00	-6
TPR	5	6938801,88	746252,60	-7,12	-6
TPR	17	6938803,00	746258,50	-7,30	-6
TPR	19	6938803,83	746258,50	-7,34	-6
TPR	16	6938802,18	746259,80	-7,36	-6
TPR	40	6938798,76	746266,35	-7,60	-6
TPR	15	6938802.18	746258.50	-7.70	-6
Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas F	Cota Assentamento	Cota MAX. Assentamento
-----------	----------	---------------------------------	---------------------------------	----------------------	---------------------------
TPR	12	6938804 71	746253.30	-8.00	-6
TPR	13	6938801.35	746258.50	-8,00	-6
TPR	18	6938803.00	746259.80	-8.00	-6
TPR	20	6938803,83	746259,80	-8,00	-6
TPR	27	6938799,15	746260,10	-8,00	-6
TPR	30	6938806,85	746259,10	-8,00	-6
TPR	33	6938809,50	746260,10	-8,00	-6
TPR	53	6938803,60	746265,05	-8,00	-6
TPR	56	6938808,70	746263,80	-8,00	-6
TPR	28	6938799,15	746260,90	-8,15	-6
TPR	29	6938806,85	746259,30	-8,30	-6
TPR	10	6938803,60	746252,60	-8,40	-6
TPR	11	6938804,71	746251,90	-8,45	-6
TPR	9	6938803,60	746251,20	-8,47	-6
TPR	24	6938796,50	746260,10	-8,47	-6
TPR	25	6938797,30	746260,10	-8,50	-6
TPR	26	6938799,15	746259,30	-8,74	-6
TPR	37	6938797,30	746263,80	-8,80	-6
TPR	55	6938804,65	746264,00	-8,80	-6
TPR	3	6938801,31	746253,30	-9,00	-6
TPR	6	6938802,45	746250,50	-9,00	-6
TPR	7	6938802,45	746251,90	-9,00	-6
TPR	14	6938801,35	746259,80	-9,00	-6
TPR	22	6938804,65	746259,80	-9,00	-6
TPR	34	6938810,30	746260,10	-9,00	-6
	54	6938803,60	746266,35	-9,00	-6
	57	6938809,50	746263,80	-9,00	-6
	58	6938810,30	746263,80	-9,00	-6
	32	6938808,70	746260,10	-9,34	-6
	31	6938806,85	746260,90	-9,50	-6
	41	60200199,09	740200,33	-9,50	-6
	4 26P	6039706 50	740231,20	-9,60	-0
TDD	305	6038802.45	740204,00	-9,00	-0
TPR	38	6938797.09	740200,00	-9,00	-0
TPR	<u> </u>	6938801 31	746250,55	-9,00	-0 -6
TPR	2	6938801 31	746250,50	-10.00	-0 -6
TPR	61A	6938802.18	746276 10	-10,00	-6
TPR	42	6938800.42	746266.35	-11.00	-6
TPR	50	6938803.00	746264.00	-11,16	-6
TPR	44	6938801.26	746265.05	-11.77	-6
TPR	61B	6938802,18	746274.50	-12.00	-6
TPR	52	6938803,83	746264,00	-14,40	-6
TPR	51	6938802,98	746265,70	-14,80	-6
TPR	35	6938795,70	746263,80	-17,10	-6
TPR	64	6938803,00	746277,70	-19,00	-6
TPR	65	6938803,83	746275,30	-19,95	-6
TPR	60	6938801,35	746277,70	-20,00	-6
TPR	63	6938803,00	746275,30	-20,00	-6
TPR	67	6938804,65	746275,30	-20,45	-6
TPR	66	6938803,83	746277,70	-21,50	-6
TPR	68	6938804,65	746277,70	-21,70	-6
TPR	59	6938801,35	746275,30	-22,00	-6
TPR	62	6938802,18	746277,70	-22,70	-6
TPR	23	6938795,70	746260,10	-22,87	-6
TPR	61	6938802,18	746275,30	-27,40	-6
TPR	36	6938796,50	746263,80	-27,71	-6
TPR	39	6938797,93	746266,35	-28,00	-6
IPR	39B	6938797,93	746265,45	-29,50	-6
	36A	6938796,50	/46263,00	-37,00	-6
	39A	6020026 024	740207,15	-40,00	-b 10
	∠04	0930020.024	1 (40204.30/	-0.60	-10

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
TRTWN	256	6938828.976	746264.352	-6.80	-10
TRTWN	286	6938836.830	746277.505	-9.60	-10
TRTWN	300b	6938836.000	746283.625	-9.60	-10
TRTWN	357	6938826,980	746284,050	-9,80	-10
TRTWN	285	6938837,350	746278,405	-10,00	-10
TRTWN	219b	6938836,090	746289,827	-10,00	-10
TRTWN	359	6938826,461	746284,950	-10,10	-10
TRTWN	300a	6938836,900	746283,625	-10,10	-10
TRTWN	221	6938833,245	746291,304	-10,20	-10
TRTWN	351	6938829,059	746284,050	-10,20	-10
TRTWN	354	6938828,020	746284,050	-10,20	-10
TRTWN	356	6938827,500	746284,950	-10,20	-10
TRTWN	358	6938826,980	746285,850	-10,20	-10
TRTWN	352	6938829,059	746285,850	-10,30	-10
TRTWN	353	6938828,539	746284,950	-10,30	-10
TRTWN	355	6938828,020	746285,850	-10,30	-10
TRTWN	243	6938814,066	746274,035	-10,50	-10
TRTWN	290	6938835,791	746279,305	-10,50	-10
TRTWN	343	6938828,020	746279,305	-10,50	-10
TRTWN	367	6938825,858	746281,675	-10,50	-10
TRTWN	297	6938837,352	746283,625	-10,60	-10
TRTWN	319	6938830,942	746281,675	-10,70	-10
TRTWN	219a	6938836,030	746289,827	-10,70	-10
TRTWN	336	6938825,941	746270,950	-10,80	-10
TRTWN	298	6938836,901	746284,725	-10,90	-10
	288	6938836,311	746278,405	-11,00	-10
TRTWN	306	6938834,425	746284,950	-11,00	-10
	324	6938829,142	746281,675	-11,10	-10
	294	6938838,250	746283,625	-11,20	-10
	295	6938837,801	746284,725	-11,20	-10
	287	6938836,830	746279,305	-11,40	-10
	291	6938838,572	740281,075	-11,50	-10
	307	6938834,700	746288,800	-11,60	-10
	242	6020026 450	740270,403	-11,70	-10
	299	6020024 425	740203,023	-11,90	-10
	304	6020022 742	740270,400	-12,00	-10
	312	6028927 500	740201,075	-12,00	-10
	332	6028226.080	740271,050	-12,00	-10
	333	6038825 0/1	740270,950	-12,10	-10
	346	6038826 080	740272,750	-12,20	-10
	2/1	6938813 /52	740279,303	-12,20	-10
	330	6938828 020	746270,924	-12,30	-10
TRTWN	335	6938826 461	746271 850	-12,30	-10
TRTWN	339	6938829.059	746277,505	-12.30	-10
TRTWN	313	6938832,425	746284,950	-12.40	-10
TRTWN	321	6938831.100	746288.800	-12.40	-10
TRTWN	212	6938841.316	746281.337	-12.50	-10
TRTWN	325	6938829.300	746288.800	-12.60	-10
TRTWN	365	6938825.858	746275.125	-12.60	-10
TRTWN	328	6938829.059	746272.750	-12,70	-10
TRTWN	341	6938828,539	746278,405	-12,70	-10
TRTWN	349	6938825.941	746279.305	-12,90	-10
TRTWN	240	6938813.375	746278,400	-13.00	-10
TRTWN	344	6938827,500	746278,405	-13,00	-10
TRTWN	314	6938832,900	746288,800	-13,10	-10
TRTWN	223	6938830,437	746292,216	-13,20	-10
TRTWN	296	6938837,352	746283,825	-13,20	-10
TRTWN	331	6938828,020	746272,750	-13,30	-10
TRTWN	225	6938827,500	746292,525	-13,50	-10
TRTWN	334	6938826,980	746272,750	-13,50	-10
TRTWN	320	6938830.425	746284.950	-13.70	-10

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
TRTWN	342	6938828.020	746277.505	-13.88	-10
TRTWN	215	6938839,733	746285,463	-14,00	-10
TRTWN	214	6938840,404	746284,145	-14,10	-10
TRTWN	222	6938831,865	746291,834	-14,10	-10
TRTWN	220	6938834,563	746290,633	-14,20	-10
TRTWN	323	6938829,142	746275,125	-14,30	-10
TRTWN	293	6938838,250	746283,825	-14,40	-10
TRTWN	345	6938826,980	746277,505	-14,70	-10
TRTWN	211	6938841,548	746279,876	-14,80	-10
TRTWN	311	6938832,425	746278,400	-14,80	-10
TRTWN	255	6938827,500	746264,275	-15,10	-10
TRTWN	340	6938829,059	746279,305	-15,10	-10
TRTWN	260	6938834,563	746266,167	-15,30	-10
TRTWN	284	6938837,870	746279,305	-15,30	-10
TRTWN	338	6938827,500	746275,125	-15,60	-10
TRTWN	289	6938835,791	746277,505	-15,70	-10
TRTWN	316	6938830,425	746271,850	-15,70	-10
TRTWN	318	6938830,425	746278,400	-15,70	-10
TRTWN	407	6938816,091	746277,505	-15,80	-10
TRTWN	275	6938836,901	746272,075	-15,90	-10
TRTWN	276	6938836,450	746271,175	-15,90	-10
TRTWN	348	6938825,941	746277,505	-15,90	-10
TRTWN	374	6938822,100	746268,000	-15,90	-10
TRTWN	239	6938813,452	746279,876	-16,00	-10
TRTWN	301	6938834,700	746288,000	-16,00	-10
TRTWN	310	6938832,742	746275,125	-16,00	-10
TRTWN	327	6938829,059	746270,950	-16,00	-10
TRTWN	347	6938826,461	746278,405	-16,00	-10
TRTWN	326	6938827,500	746268,000	-16,10	-10
	216	6938838,927	746286,702	-16,20	-10
	266	6938840,404	746272,655	-16,30	-10
	273	6938837,352	746271,175	-16,30	-10
	279	6938836,342	746275,125	-16,30	-10
	252	6938823,135	746264,966	-16,60	-10
	257	6938830,437	740204,584	-16,60	-10
	302	6938834,425	746271,850	-16,60	-10
	383	6938820,458	746275,125	-16,60	-10
	201	6936621,755	740200,490	-16,70	-10
	322	6038916 430	740200,000	-16,70	-10
	397	6030037 001	740273,123	-16,70	-10
	212	6029924 542	740272,075	-10,90	-10
	259	6029221 965	740275,125	-10,90	-10
	250	6038835 802	740204,900	-17,00	-10
	201	6938830 942	746275 125	-17,00	-10
TRTW/N	239	6938813 500	746279 876	-17 10	-10 -10
TRTW/N	233	6938836 450	746272 975	-17.30	-10
	315	6938831 100	746268 000	-17 30	<u>-10</u>
TRTWN	370	6938823 900	746268.000	-17,30	-10
TRTWN	210	6938841 625	746278 400	-17,40	-10
TRTWN	398	6938819 209	746277 505	-17 60	-10
TRTWN	250	6938820 438	746266 167	-17 80	-10
TRTWN	381	6938820.300	746268.000	-17.80	-10
TRTWN	245	6938815,267	746271,338	-18.00	-10
TRTWN	274	6938837.352	746272.975	-18.00	-10
TRTWN	309	6938832,425	746271.850	-18.00	-10
TRTWN	264	6938838.927	746270.098	-18.10	-10
TRTWN	394	6938816.750	746271.175	-18.10	-10
TRTWN	253	6938824.563	746264.580	-18.20	-10
TRTWN	282	6938838.389	746278.405	-18.20	-10
TRTWN	390	6938818.099	746272.075	-18,20	-10
TRTWN	401	6938818,170	746277.505	-18.20	-10

Estrutura	Estacas	Coordenadas Geográficas	Coordenadas Geográficas	Cota Assentamento	Cota MAX. Assentamento
		N	E	da Estaca	PROJETADO
TRTWN	267	6938840,934	746274,035	-18,30	-10
TRTWN	247	6938817,003	746268,949	-18,40	-10
	363	6938825,700	746268,000	-18,40	-10
	392	6938817,648	746272,975	-18,40	-10
	378	6938822,258	746281,675	-18,50	-10
	406	6938816,611	746278,405	-18,50	-10
	263	6938837,997	746268,949	-18,60	-10
	300	6020027,300	740201,075	-18,60	-10
	390	6020010,750	740272,975	-10,00	-10
	200	6029229 250	740273,403	-10,00	-10
	271	6029227 970	740272,975	-10,00	-10
	203	6038824.058	740277,505	-18.80	-10
	306	6038818 658	740275,125	-18.80	-10
	301	6038817.648	740273,123	-18.90	-10
	303	6038817 100	740271,175	-18.90	-10
	246	6938816.073	740272,073	-10,90	-10
	240	6038810 108	746266 973	-19,00	-10
TRTWN	270	6938838 250	746271 175	-19,00	-10
TRTWN	308	6938832 900	746268.000	-19,00	-10
TRTWN	360	6938825 941	746284.050	-19.00	-10
TRTWN	403	6938817 650	746278 405	-19.00	-10
TRTWN	228	6938823 135	746291 834	-19 10	-10
TRTWN	248	6938818.049	746267,903	-19,10	-10
TRTWN	262	6938836.951	746267,903	-19.20	-10
TRTWN	265	6938839.733	746271.338	-19.20	-10
TRTWN	218	6938836.951	746288.897	-19.30	-10
TRTWN	229	6938821.755	746291.304	-19.30	-10
TRTWN	368	6938824.575	746284.950	-19.30	-10
TRTWN	385	6938820,458	746281,675	-19,30	-10
TRTWN	376	6938822,258	746275,125	-19,50	-10
TRTWN	399	6938819,209	746279,305	-19,50	-10
TRTWN	278	6938838,572	746275,125	-19,60	-10
TRTWN	269	6938841,548	746276,924	-19,70	-10
TRTWN	382	6938820,575	746271,850	-19,70	-10
TRTWN	400	6938818,689	746278,405	-19,70	-10
TRTWN	409	6938818,658	746281,675	-19,70	-10
TRTWN	213	6938840,934	746282,765	-19,80	-10
TRTWN	364	6938824,575	746271,850	-19,80	-10
TRTWN	386	6938820,575	746284,950	-19,80	-10
TRTWN	388	6938818,550	746271,175	-19,80	-10
TRTWN	402	6938818,170	746279,305	-19,80	-10
TRTWN	408	6938816,091	746279,305	-19,80	-10
TRTWN	281	6938838,909	746279,305	-19,90	-10
	414	6938817,648	746283,825	-20,00	-10
	361	6938825,941	/46285,850	-20,10	-10
	226	6938826,024	/46292,448	-20,30	-10
	305	6938834,542	746281,675	-20,40	-10
	410	6020022.045	746281,675	-20,40	-10
	259	6938833,245	746265,496	-20,50	-10
	292	0938830,342	740201,675	-20,60	-10
	230	0930015,207	740200,403	-20,80	-10
	309	0900020,/00	140200,000 746202.005	-20,80	-10
	41/	6020022 750	140203,020	-21,30	-10
	217	0930033,/50	740223,050	-21,50	-10
	2094	6030013,010	7/6070 075	-21,30	-10
	366	6038834 575	746279 400	-21,00	-10
	300	6038822 575	7/6271 950	-21,90	-10 _10
	<u> </u>	6938818 550	746285 625	-22,00	-10
TRTW/N	329	6938828 539	746271 850	-22,20	-10
TRTWN	362	6938827,500	746288.800	-23.00	-10

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas F	Cota Assentamento da Estaca	Cota MAX. Assentamento
TRTWN	404	6938817 130	746277 505	-23 10	-10
TRTWN	405	6938817.130	746279.305	-23.20	-10
TRTWN	384	6938820,575	746278,400	-23,50	-10
TRTWN	238	6938813,684	746281,337	-23,60	-10
TRTWN	224	6938828,976	746292,480	-24,00	-10
TRTWN	237	6938814,066	746282,765	-24,10	-10
TRTWN	236	6938814,596	746284,145	-24,20	-10
TRTWN	231	6938819,198	746289,827	-24,80	-10
TRTWN	418	6938816,750	746285,625	-25,00	-10
TRTWN	413	6938818,099	746284,725	-25,10	-10
TRTWN	233	6938817,003	746287,851	-25,20	-10
TRTWN	244	6938814,596	746272,655	-25,20	-10
TRTWN	372	6938824,058	746281,675	-25,20	-10
TRTWN	387	6938820,300	746288,800	-25,20	-10
TRTWN	230	6938820,438	746290,633	-25,40	-10
TRTWN	380	6938822,100	746288,800	-25,40	-10
TRTWN	232	6938818,049	746288,897	-25,80	-10
TRTWN	280	6938838,909	746277,505	-25,90	-10
TRTWN	379	6938822,575	746284,950	-25,90	-10
TRTWN	415	6938817,648	746285,625	-26,20	-10
TRTWN	416	6938817,199	746284,725	-26,20	-10
TRTWN	411	6938818,550	746283,825	-26,65	-10
TRTWN	219	6938835,802	746289,827	-27,00	-10
	300	6938836,450	746283,625	-27,60	-10
TRTWN	377	6938822,575	746278,400	-27,80	-10
	239B	6938813,010	746279,876	-29,20	-10
	227	6938824,563	746292,216	-29,70	-10
	234	6938816,073	746286,702	-29,85	-10
	373	6938823,900	746288,800	-31,80	-10
	130	6938780,06	746277,51	-19,50	-17
	44	6938774,14	746264,97	-9,60	-17
	43	6029771 20	740203,30	-10,30	-17
	172	6029775 56	740200,00	-11,20	-17
	40	6029777.02	740204,30	-13,70	-17
	40	6039777.02	740204,33	-13,00	-17
	168	6038773 58	740208,00	-14,00	-17
	100	6038771.58	740270,40	-15,20	-17
	173	6038771.46	740271,00	-15,20	-17
TRTWS	38	6938767.07	746270,10	-15,30	-17
TRTWS	157	6938775 58	746278.40	-15,40	-17
TRTWS	135	6938778 50	746278.41	-15,40	-17
TRTWS	137	6938777.98	746279 31	-15,50	-17
TRTWS	167	6938773.26	746275.13	-15 50	-17
TRTWS	22A	6938771 48	746290.63	-15.50	-17
TRTWS	132	6938779 54	746278 41	-15.60	-17
TRTWS	140	6938776.94	746279.31	-15.60	-17
TRTWS	175	6938771.58	746278.40	-15.70	-17
TRTWS	154B	6938776.79	746268.00	-15.70	-17
TRTWS	151	6938776.94	746284.05	-15.80	-17
TRTWS	115	6938780,14	746281.68	-15.85	-17
TRTWS	37	6938766,27	746271,34	-15,90	-17
TRTWS	144	6938779,54	746284,95	-15,90	-17
TRTWS	193	6938769,17	746279,31	-15,90	-17
TRTWS	138	6938777,46	746278,41	-16,00	-17
TRTWS	141	6938778,50	746281,68	-16,00	-17
TRTWS	146	6938779,02	746285,85	-16,00	-17
TRTWS	149	6938777,98	746285,85	-16,00	-17
TRTWS	152	6938776,94	746285,85	-16,00	-17
TRTWS	158	6938776,86	746281,68	-16,00	-17
TRTWS	165	6938773,10	746268,00	-16,00	-17
TRTWS	169	6938773.26	746281.68	-16.00	-17

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
TRTWS	176	6938771.46	746281.68	-16.00	-17
TRTWS	190	6938770.21	746279.31	-16.00	-17
TRTWS	95	6938785.43	746278.40	-16.10	-17
TRTWS	111	6938781,43	746284,95	-16,10	-17
TRTWS	145	6938779,02	746284,05	-16,10	-17
TRTWS	147	6938778,50	746284,95	-16,10	-17
TRTWS	159	6938775,58	746284,85	-16,10	-17
TRTWS	191	6938769,69	746278,41	-16,10	-17
TRTWS	12	6938785,59	746290,63	-16,20	-17
TRTWS	47	6938778,50	746264,28	-16,20	-17
TRTWS	143	6938780,06	746285,85	-16,20	-17
TRTWS	163	6938775,06	746281,68	-16,20	-17
TRTWS	192	6938769,17	746277,51	-16,20	-17
TRTWS	197	6938767,61	746278,41	-16,20	-17
TRTWS	150	6938777,46	746284,95	-16,30	-17
TRTWS	189	6938770,21	746277,51	-16,30	-17
TRTWS	142	6938780,06	746284,05	-16,40	-17
TRTWS	148	6938777,98	746284,05	-16,40	-17
TRTWS	196	6938768,13	746279,31	-16,40	-17
TRTWS	195	6938768,13	746277,51	-16,45	-17
TRTWS	17	6938778,50	746292,53	-16,50	-17
TRTWS	194	6938768,65	746278,41	-16,50	-17
TRTWS	206	6938768,65	746285,63	-16,50	-17
TRTWS	13	6938784,25	746291,30	-16,60	-17
TRTWS	14	6938782,87	746291,83	-16,60	-17
IRIWS	15	6938781,44	746292,22	-16,60	-17
TRTWS	16	6938779,98	746292,45	-16,60	-17
	30	6938764,68	746281,34	-16,60	-17
	40	6938769,05	746267,90	-16,60	-17
	153	6938778,50	746288,80	-16,60	-17
	160	6938776,70	746288,80	-16,60	-17
	199	6938767,09	746279,31	-16,60	-17
	201	6938767,43	740281,08	-16,60	-17
	203	6029774.00	740200,00	-16,60	-17
	104	6029772 59	740200,00	-10,00	-17
	25	6029769.00	740204,90	-10,00	-17
	20	6029767.07	740207,00	-16,70	-17
	20	6028764.45	740200,70	-10,70	-17
	32	6038764 38	740279,00	-16,70	-17
	116	6038780 30	746288.80	-16,70	-17
	202	6938769.55	740200,00	-16,70	-17
TRTWS	171	6938774 90	746288.80	-16.75	-17
TRTWS	204	6938769 10	746284 73	-16 75	-17
TRTWS	18	6938777 02	746292 45	-16.80	-17
TRTWS	22	6938771.44	746290.63	-16.80	-17
TRTWS	28	6938765.60	746284.25	-16.80	-17
TRTWS	29	6938765.07	746282.77	-16.80	-17
TRTWS	36	6938765.60	746272.66	-16.80	-17
TRTWS	39	6938768.00	746268.95	-16.80	-17
TRTWS	200	6938769.66	746281.68	-16.80	-17
TRTWS	205	6938768.65	746283.83	-16,80	-17
TRTWS	207	6938768.20	746284.73	-16,80	-17
TRTWS	209	6938767,75	746285,63	-16,80	-17
TRTWS	177	6938771,58	746284,95	-16,83	-17
TRTWS	20	6938774,14	746291,84	-16,85	-17
TRTWS	24	6938769,05	746288,90	-16,90	-17
TRTWS	208	6938767,75	746283,83	-16,90	-17
TRTWS	179	6938769,55	746271,18	-16,95	-17
TRTWS	11	6938785,56	746290,63	-17,00	-17
TRTWS	19	6938775,56	746292,22	-17,00	-17
TRTWS	21	6938772.76	746291.30	-17.00	-17

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
TRTWS	23	6938770.20	746289.83	-17.00	-17
TRTWS	27	6938766,27	746285,46	-17,00	-17
TRTWS	33	6938764,45	746276,92	-17,00	-17
TRTWS	41	6938770,20	746266,97	-17,00	-17
TRTWS	104	6938783,43	746284,95	-17,00	-17
TRTWS	112	6938782,10	746288,80	-17,00	-17
TRTWS	178	6938771,30	746288,80	-17,00	-17
TRTWS	198	6938767,09	746277,51	-17,00	-17
TRTWS	22B	6938771,80	746290,63	-17,00	-17
TRTWS	34	6938764,68	746275,46	-17,10	-17
TRTWS	134	6938779,02	746279,31	-17,30	-17
TRTWS	181	6938769,10	746272,08	-17,30	-17
TRTWS	182	6938768,65	746271,18	-17,30	-17
TRTWS	110	6938781,94	746281,68	-17,40	-17
TRTWS	131	6938780,06	746279,31	-17,40	-17
TRTWS	136	6938777,98	746277,51	-17,40	-17
TRTWS	139	6938776,94	746277,51	-17,40	-17
TRTWS	154A	6938776,75	746268,00	-17,70	-17
TRTWS	180	6938769,55	746272,98	-18,00	-17
TRTWS	185	6938767,75	746271,18	-18,00	-17
TRTWS	183	6938768,65	746272,98	-18,20	-17
TRTWS	133	6938779,02	746277,51	-18,30	-17
TRTWS	184	6938768,20	746272,08	-18,30	-17
TRTWS	186	6938767,75	746272,98	-18,30	-17
TRTWS	187	6938769,66	746275,13	-18,30	-17
TRTWS	67	6938797,45	746271,18	-18,50	-17
TRTWS	98	6938785,70	746288,80	-18,50	-17
TRTWS	188	6938767,43	746275,13	-18,50	-17
TRTWS	105	6938783,90	746288,80	-18,60	-17
	35	6938765,06	746274,04	-18,70	-17
	42	6938771,44	746266,17	-18,70	-17
	6	6938790,70	746285,46	-19,00	-17
	50	6938782,87	746264,97	-19,20	-17
	107	6938781,43	746271,85	-19,20	-17
	74	0938788,87	740277,51	-19,40	-17
	93	6938785,43	746271,85	-19,40	-17
	127	6938776,94	746270,95	-19,40	-17
	07	6030704,23	740203,30	-19,50	-17
	97	6029790.06	740204,90	-19,50	-17
	150	6029772 59	740277,75	-19,50	-17
	77	6029797 92	740271,00	-19,50	-17
	00	6029792.00	740277,51	-19,00	-17
	101	6038783 74	740200,00	-19,00	-17
	101	6938781 //	740275,15	-19,00	-17
TRTWS	100	6938783 43	746271 85	-19,70	-17
TRTWS	113	6938780 30	746268.00	-19.70	-17
TRTWS	52	6938785 56	746266 17	-19.80	-17
TRTWS	114	6938780 14	746275 13	-19.80	-17
TRTWS	92	6938785 70	746268.00	-19.90	-17
TRTWS	118	6938780.06	746270.95	-19.90	-17
TRTWS	119	6938780.06	746272 75	-19.90	-17
TRTWS	57	6938790 73	746271.34	-20.00	-17
TRTWS	80	6938786 79	746277 51	-20.00	-17
TRTWS	106	6938782.10	746268.00	-20.00	-17
TRTWS	120	6938779.54	746271.85	-20.10	-17
TRTWS	109	6938781.43	746278.40	-20.30	-17
TRTWS	63	6938788.80	746272.08	-20.40	-17
TRTWS	102	6938783.43	746278.40	-20.40	-17
TRTWS	54	6938787.95	746266.90	-20.50	-17
TRTWS	76	6938788.35	746278.41	-20,50	-17
TRTWS	108	6938781.94	746275.13	-20.60	-17

Estrutura	Estacas	Coordenadas Geográficas N	Coordenadas Geográficas E	Cota Assentamento da Estaca	Cota MAX. Assentamento PROJETADO
TRTWS	122	6938779.02	746272.75	-20.60	-17
TRTWS	70	6938787.34	746275.13	-20,70	-17
TRTWS	129	6938778.50	746275.13	-20.75	-17
TRTWS	68	6938797.45	746272.98	-20,80	-17
TRTWS	103	6938783.74	746281.68	-20.80	-17
TRTWS	125	6938777.98	746272.75	-20,80	-17
TRTWS	81	6938786.79	746279.31	-20,90	-17
TRTWS	3	6938792.32	746281.34	-21.00	-17
TRTWS	4	6938791,93	746282.77	-21.00	-17
TRTWS	79	6938787.31	746278.41	-21.00	-17
TRTWS	94	6938785.54	746275.13	-21.00	-17
TRTWS	117	6938778.50	746268.00	-21.00	-17
TRTWS	121	6938779.02	746270.95	-21.00	-17
TRTWS	1	6938792.63	746278.40	-21.10	-17
TRTWS	53	6938786.80	746266.97	-21.20	-17
TRTWS	55	6938789.00	746268.95	-21.20	-17
TRTWS	83	6938787.68	746281.68	-21.20	-17
TRTWS	56	6938789.93	746270.10	-21.30	-17
TRTWS	96	6938785.54	746281.68	-21.40	-17
TRTWS	128	6938776.94	746272.75	-21.40	-17
TRTWS	156	6938776.94	746275.13	-21,40	-17
TRTWS	2	6938792.55	746279.88	-21,50	-17
TRTWS	7	6938789.93	746286.70	-21,60	-17
TRTWS	90	6938787.41	746283.83	-21.60	-17
TRTWS	59	6938792.32	746275.46	-21,70	-17
TRTWS	60	6938792.55	746276.92	-21.70	-17
TRTWS	71	6938789.91	746277.51	-21,70	-17
TRTWS	89	6938787.90	746284.73	-21.70	-17
TRTWS	123	6938778.50	746271.85	-21.70	-17
TRTWS	124	6938777.98	746270.95	-21.70	-17
TRTWS	88	6938788.35	746284.95	-21.80	-17
TRTWS	58	6938791,93	746274,04	-21,90	-17
TRTWS	78	6938787,83	746279,31	-22,00	-17
TRTWS	155	6938775,58	746271,85	-22,00	-17
TRTWS	82	6938789,57	746281,68	-22,10	-17
TRTWS	57A	6938790,78	746271,34	-22,10	-17
TRTWS	72	6938789,91	746279,31	-22,20	-17
TRTWS	84	6938789,25	746283,83	-22,20	-17
TRTWS	85	6938789,25	746285,85	-22,20	-17
TRTWS	65	6938788,35	746272,98	-22,40	-17
TRTWS	73	6938789,39	746278,41	-22,40	-17
TRTWS	75	6938788,87	746279,31	-22,40	-17
TRTWS	126	6938777,46	746271,85	-22,70	-17
TRTWS	10	6938786,80	746289,83	-22,80	-17
TRTWS	86	6938788,80	746284,95	-22,80	-17
TRTWS	91	6938787,41	746285,63	-23,00	-17
TRTWS	87	6938788,35	746283,83	-23,20	-17
TRTWS	8	6938789,00	746287,85	-24,20	-17
TRTWS	57	6938791,40	746272,66	-24,20	-17
TRTWS	5	6938791,40	746284,15	-24,70	-17
TRTWS	69	6938789,57	746275,13	-24,90	-17
TRTWS	48	6938779,98	746264,35	-25,90	-17
TRTWS	162	6938775,06	746275,13	-26,40	-17
TRTWS	61	6938789,25	746271,18	-27,80	-17
TRTWS	62	6938789,25	746272,98	-28,20	-17
TRTWS	64	6938788,35	746271,18	-34,50	-17
TRTWS	154	6938776,70	746268,00	-43,90	-17
TRTWS	9	6938787,95	746288,90	-53,70	-17
TRTWS	66	6938787,90	746272,08	-57,00	-17

8 ANEXOS

8.1 PERFIL DE SONDAGEM À PERCUSSÃO – SPT.

8.1.1 Furo de Sondagem Percussiva – SPT - SP1.1

(0	ТО	AL	A	GICO S				RI	ESIST PENE	ÊNCIA À	4								T
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NÍVEL D'ÁGI (m)	PROFUNDIDA DA CAMAD (m)	PERFIL GEOLÓ / AMOSTRA	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)		ENSAIO DE	PENETRAÇÃO	(GOLLESTENEL.)	INICIAL	FINAL - N _{SPT}		10	(N _{SP}	3RAF T (GC	FICO DLPES	S) 4	0	
	т П		2.20	00	Aterro com areia fina siltosa, pouco compacto a medianamente compacto. Cor: Vermelho.	2 1: 3	5	- <u>4</u> <u>15</u> <u>4</u> <u>15</u>	- 5 15 <u>6</u>	- 6 7	- 9 10								_
	3,00	3,18	3,34	03	Areia fina siltosa, fofa a medianamente compacta. Cor: Verde	E	<u>0</u>	-	<u>1</u> 18	P 30	<u>1</u> 18	/							_
		_	4,45		Argila siltosa pouco arenosa (areia fina), muito mole. Cor: Verde.	_ <u>1</u> 31	0		<u>1</u> 15	<u>1</u> 30	1 15								_
			4,96		Areia média. Cor: Cinza escuro.	1	L	1		2	1								
	CA			 	Argila silto arenosa, (areia muito fina), muito mole.	2: _1 2:	5 	21 <u>1</u> 15	- <u>1</u> 12	46 2 35	21 2 27								_
				≠ <u>,</u>	Cor: Cinza escuro.	<u>_1</u> 31	0	-	<u>1</u> 20	<u>1</u> 30	<u>1</u> 20								_
			8,00	≠ @		- 2	2	<u>1</u> 15	<u>1</u> 15	<u>3</u> 35	2	┺					-		-
Ë.	¥ 8,85	3,24m 8,18m	9,00	<u>=/</u> =/	Silte argiloso, muito mole a mole. Cor: Verde.	5	5	8	<u>15</u>				1	\succ					
-10,00		02/2017:3	9,79		Areia fina a muito grossa com pequenos seixos angulosos, pouco argilosa, medianamente compacta a compacta. Cor: Cinza	1	5	15	15	13	23								
		N.A. FINAL: 20/ N.A. FINAL: 20/			IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.														

(0) () () () () () () () () () () () () ()		GICO		RESIST PENE	ÊNCIA À IRAÇÃO			CRÁFICO					
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NÍVEL D'ÁGI (m)	PROFUNDIDA DA CAMAD (m)	PERFIL GEOLÓ / AMOSTRA	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE PENETRAÇÃO (GOLPES/PENET.)	INICIAL	FINAL - N _{SPT}		N _S 10	GRAF _{РТ} (GC 20	1CO LPES) 30	40	
	ТП П	1,23	0,90	 01	Aterro composto de areia fina, siltosa. Cor: Vermelho.	$\frac{1}{30} - \frac{1}{15}$	- 1 30	- 1 15						_
	2,00	_	3.20		Argila arenosa (areia muito fina a fina), muito mole. Cor: Verde.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 35 1	2						
E			3,75	1.1	Areia média a grossa pouco argilosa, fofa. Cor: Cinza.	- 30 16	30	10						
-5,00	CA		5,68	64	Argila siltosa, muito mole. Cor: Preto.	$\frac{1}{20}$ $\frac{1}{30}$ - $\frac{1}{45}$	2 50 1 45	30						
			6.40	6	Argila arenosa (areia fina), muito mole a mole. Cor: Verde.	$\frac{1}{20}$ $\frac{1}{15}$ $\frac{1}{12}$	2 35	2 27	ŧ.		++			_
	Ļ		8,54	 	Areia fina a grossa pouco argilosa, fofa a muito compacta. Cor: Verde.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 21	4 30			•			
-8,86	8,86	-	8,86		Solo residual com pedregulhos grossos.	-								
		N.A. INICIAL: 08/03/2017 : 1,74n N.A. FINAL: 08/03/2017 : 1,23m			LIMITE DA SONDAGEM NOTA: Impenetrável em pedregulhos. Impossível de prosseguir na lavagem.									

8.1.2 Furo de Sondagem Percussiva – SPT - SP1.1A

6	2	4	DE	SICO		RESIS	TÊNCIA À TRAÇÃO		
COTA (m) (Escala 1:10(AVANÇO / REVESTIMEN' (m)	NÍVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓG	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE PENETRAÇÃO (GOLP ES/PENET.)	INICIAL	FINAL - N _{SPT}	GRÁFICO N _{SPT} (GOLPES) 10 20 30 40
	Ť		1.51	00 01	Aterro com areia fina a grossa argilosa com fragmentos de rocha, fofa. Cor: Vermelho.	$\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$	- 2	2	
	2,00	1,61			Argila arenosa (areia fina), muito mole.	$\frac{P}{30} - \frac{1}{20}$	1 30	<u>1</u> 20	
			3.84		Cor: Cinza esverdeado escuro.	$\frac{1}{25}$ $\frac{1}{22}$ -	2 47	1 22	
			3,98	14	Areia média. Cor: Cinza.	<u>P 1</u> 10 38 -	1 48	1 38	
-5,00				/ <u>05</u> /		<u>P</u> <u>1</u> 15 <u>30</u> -	1 45	1 30	
				/ [®] /		P 1 1 15 15 20	1 30	2 35	
				07		$\frac{1}{31} - \frac{1}{14}$	1 31	1 14	
	CA	5.0		,,	Areia fina, argilosa, fofa a pouco compacta. Cor: Cinza escuro.	$\frac{1}{20}$ $\frac{1}{15}$ $\frac{1}{10}$	2 35	2 25	
		2017 : 1,70n 017 : 1,61m		/ ⁰⁰ /		$\frac{2}{20}$ $\frac{1}{15}$ $\frac{2}{15}$	3 35	3	
<u>-1</u> 0,00		ML: 22(02)		10		$\frac{1}{15}$ $\frac{2}{15}$ $\frac{2}{15}$	3	4	
		N.A. INIC N.A. FIN	11,30	<u>,</u> •		<u>3 5 8</u> 15 15 15	8	13	
				(12)	Areia fina, medianamente comparta a compacta	<u>9 15 23</u> 15 15 15	24	38	
				(13)	Cor. Bege.	8 10 17 15 15 15	18	27	
	14.45		13,96	NR	Solo residual.	<u>12</u> <u>13</u> <u>16</u> 15 15 15	25	29	
-14,40	14,40				LIMITE DA SONDAGEM	1			
					NOTA: Impenetrável em pedregulhos. Impossível de prosseguir na lavagem.				

8.1.3 Furo de Sondagem Percussiva – SPT - SP1.2

6	2	٩		SICO			RE	SIST	ÊNCIA /	4						
COTA (m) (Escala 1:100	AVANÇO / REVESTIMEN' (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMADA (m)	PERFIL GEOLÓC	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)		ENSAIO DE PENETRAÇÃO (GOLPESIPENET.)		INICIAL	FINAL - N _{SPT}		N 10	GRÁ SPT (G	FICO DLPE	S)	40
		1,34	1,64		Aterro de areia fina a grossa, argilosa, fofo. Cor: Vermelho.	- <u>1</u> 15	- <u>1</u> 15	- 1 15	-	- 2						
	2.00			8	Argila silto arenosa (areia muito fina), muito mole. Cor: Cinza escuro.	40 <u>1</u> 35	-	1/42 1/15	40 40 <u>1</u> 35	1 42 <u>1</u> 15						
			3,78	=/= •		1 15	1 15	2 15	2	3					_	
-5,00			5.54	05	Areia média, fofa. Cor: Cinza escuro.	<u>1</u> 15	<u>2</u> 15	2 15	3	4			_			
				0		P 15	<u>1</u> 30	-	4 5	1 30	\vdash					
				NR		48	-	-	2 48				-			
	CA	Fr		NR		<u>Р</u> 52	-	-	<u>P</u> 52		-					
		2017 : 1,64		NR		<u>Р</u> 50	-	-	<u>Р</u> 50						-	
-10,00		VAL: 24/02/2		NR	Argila arenosa (areia muito fina), muito mole. Cor: Preto	<u>Р</u> 45	-	-	<u>P</u> 45							
		N.A. INK N.A. FI		NR		1 30	-	<u>1</u> 25	30	1 25						
				NR		47 47	-	-	P 47							
			12.99	13		1 15	1 15	<u>1</u> 15	2	2	ł,	+	+	+	+	
-14,35	14.35		14,35	(14)	Solo residual. Cor: Amarelo variegado.	15	<u>3</u> 15	<u>50</u> 5	6	<u>53</u> 20					-	
					LIMITE DA SONDAGEM											
					NOTA: Furo paralisado aos 14,35m de profundidade devido a perda do amostrador no interior do furo.											

8.1.4 Furo de Sondagem Percussiva – SPT - SP1.3

(0	5	A I	A	GICO		RESIST PENET	ÊNCIA À						
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE PENETRAÇÃO (GOLPESIPENET.)	INICIAL	FINAL - N _{SPT}	1	0	GRÁFI T (GOI	CO LPES) 30	40
	Î		0.88	NR	Aterro composto de areia fina, siltosa. Cor: Vermelho.		-						
	1 ↓ 2,00	1,52	2,25		Argila, muito mole. Cor: Cinza esverdeado.	$\frac{P}{15} \frac{1}{35} - \frac{P}{15} \frac{1}{15} \frac{1}{15}$	1 50 1	1 35 2					
				/»/		$\frac{1}{30} - \frac{1}{20}$	1 30	1 20					+
				/ 🎻	Areia fina a média, argilosa, fofa. Cor: Cinza escuro.	$\frac{1}{30} - \frac{1}{20}$	1 30	1 20			$\left \right $	++	
-5,00				/ je /		$\frac{1}{26}$ $\frac{1}{24}$ -	2 50	1 24					
			5,80	1.00		P 1 15 30 -	1 45	1 30				++	
						P 1 18 27 -	1 45	1 27					
	64	1,58m 52m		/ <u>1</u> 00/.		$\frac{P}{20} \frac{1}{30}$ -	1 50	1 30				++	+
		03/2017: V/2017:1		/ <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		P 47	<u>Р</u> 47	-			$\left \right $	++	+
-10,00		NICIAL: 08/03			Argila arenosa (areia muito fina a fina), muito mole. Cor: Cinza escuro.	P 52	<u>Р</u> 52						
		NAI		, <u>1</u>		P 48	<u>Р</u> 48	-					
				12		P 49	<u>Р</u> 49	-				+	+
			12.69	13		P 1 20 33 -	1 53	1 33	<u> </u>	+		++	
	Ļ		13,90	14	Seixos com granulometria variada. Cor: Cinza escuro.	2 <u>3</u> <u>35</u> 15 <u>15</u> 9	5	38	Ň			\rightarrow	
-15,00	14,58		14,58		Areia fina a média, argilosa, pouco compacta a muito compacta. Cor: Cinza escuro.	-							
-16,00					LIMITE DA SONDAGEM NOTA: Impenetrável em pedregulhos. Impossível de prosseguir na lavagem.								
E													

8.1.5 Furo de Sondagem Percussiva – SPT - SP1.3A

6	2	A	E C	s co				RES	ISTÊ	ÈNCIA À RAÇÃO							
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓG	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)		ENSAID DE	PENETRAÇÃO (GOLPES/PENET.)		INICIAL	FINAL - N _{SPT}		Ns	GRÁI PT (GC 20	FICO DLPES 30	5) 40	J
	Î		0.95		Aterro com areia fina a grossa, argilosa. Cor: Vermelho.		-	-	-								
	Ţ	1,68	1,70		Argila silto arenosa (areia fina) muito mole. Cor: Cinza escuro.		15	15 1	8	2	33	1					
	2.00		1,98	<u>,</u>	Areia média. Cor: Cinza.	_	1 30	- 12	6	<u>1</u> 30	1 20	╉┼			+		
			3,00		Cor: Cinza esverdeado.	_	1 45	-	-	<u>1</u> 45					_		
							30	- ;	1 4	30	1 21						
-5,00) 05				- 2	1	P 30	1 20						
	CA				Argila arenosa (areia fina), muito mole a rija. Cor: Cinza escuro.		20	1 30	-	50	<u>1</u> 30				_		
				NR			<u>р</u> 15	1 35	-	<u>1</u> 50	<u>1</u> 35	-			_		
		_		NR .			1 47	-	-	1 47					+		
	Ļ	7:1,76m 7:1,68m	9,35	09			1 30	17	-	<u>18</u> 45	<u>17</u> 15	`	•		+		
-9,80	9,58	02/201	9,58	/ /	Areia fina a média, argilosa. Cor: Cinza escuro.												
		IAL: 23			IMPENETRÁVEL AO TRÉPANO DE LAVAGEM												
		N.A. INIC N.A. FIN			NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.												

8.1.6 Furo de Sondagem Percussiva – SPT - SP1.4

6 9	6	Ā	DE A	GICO		RESIST	ÊNCIA À		
COTA (m) (Escala 1:10 AVANÇO / DEVESTIMENI	REVESTIMEN (m)	NIVEL D'AGU (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓ(/ AMOSTRA:	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE PENETRAÇÃO (GOLP ESIPENET.)	INICIAL	FINAL - N _{SPT}	GRÁFICO N _{SPT} (GOLPES) 10 20 30 40
	↑ , ,	1,43	2,58 3,60		Areia fina, argilosa, fofa. Cor: Cinza. Areia fina a média, pouco argilosa, fofa. Cor: Cinza escuro. Areia muito fina, argilosa, fofa. Cor: Cinza escuro.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 35 1 30 1 45 P 30 1 48 1 54 1 30	- 2 35 1 15 - 1 20 1 30 1 34 1 20	
		2/2017 : 1,84m 2017 : 1,43m	9,34		Areia fina, argilosa, fofa a medianamente compacta. Cor: Cinza escuro.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3 11	
-10,00	¥	N.A. INCIAL: 25/02/ N.A. FINNL: 25/02/	<u>14.25</u> 14.54	6 6 6	Areia fina, medianamente compacta a muito compacta. Cor: Bege. Argila arenosa (areia média a muito grossa), medianamente compacta. Cor: Cinza amarelado. IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 26 29 21 13	27 41 47 27 18	

8.1.7 Furo de Sondagem Percussiva – SPT - SP1.4B

6	2	V	A DE	aico s	-			RI	ESIST	TÊNCIA /								
COTA (m) (Escala 1:10	AVANÇO/ REVESTIMEN (m)	NÍVEL D'ÁGL (m)	PROFUNDIDA DA CAMAD. (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)		and Crivers	PENETRAÇÃO		INICIAL	FINAL - N _{SPT}		10 	G N _{SP}	(GOL	CO .PES) 30	40	
	Î					Ť	-	•	•	-	-						T	
	Ť	1.39			Areia fina siltosa fofa. Cor: Vermelho.	4	17	•	•	47	•							
	2.00		2.00	<u></u>		2	20	34	•	54	34		1				T	
			3,00	7	Argila muito mole. Cor: Cinza escuro.		P 10	$\frac{1}{20}$	1 15	30	35		+				\dagger	
			4,00	04		1	P 5	$\frac{1}{30}$	•	45	1 30			-			+	
-5,00				05	Argila pouco arenosa (areia fina), muito	2	1	1 15	1 10	2 35	2 25			+			+	
				0 6	mole. Cor: Preto.	3	<u>1</u> 30	1 20		2 50	1 20	+	+	-	\vdash		+	
				07		1	1	<u>1</u> 15	<u>1</u> 15	2 32	2	1		-			_	
			1,14	08		1	15	<u>22</u> 15	<u>30</u> 8	33	<u>52</u> 23		+	<u> </u>	·	7	$\overline{+}$	
		117 : 1,56m 17 : 1,39m		(9)		1	10	<u>18</u> 15	<u>30</u> 12	28	48 27	\vdash	+	-		4	+	
<u>-1</u> 0,00		L: 20'02/20		(10)	Areia muito fina a fina, pouco compacta a	1	1	<u>15</u> 15	<u>26</u> 15	26	41	\vdash	+	-	-		+	$\left\{ \right\}$
	CA	NA. INCIA N.A. FINA		•	muito compacta. Cor: Amarelo	-	9	<u>18</u> 15	<u>23</u> 15	27	41		+	-	1		┦	
				(12)		1	7	9 15	6 15	16	15			é	Ĥ		+	
				(13)		-	3	3 15	3 15	6	6			_			+	
			13,60	14		-	1	1 15	2	2	3	4	_	_			\downarrow	
-15,00				15			1	2	2	3	4						\perp	
				16	Areia fina argilosa, fofa a pouco compacta. Cor: Amarelo ferruginoso		2	2	3	4 33	5							
							3	2	3	5	5							
			17,35		Argila, mole a média. Cor: Verde.		2	2	4									
			18,50		Arolla pouco arenosa (areia fina) solo residual		2	2	15 <u>3</u>									
-20,00	20.00		20,00		de alteração de rocha granitica, mole a dura. Cor: Amarelo ferruginoso.	1	30 4	15	15	4 <u>30</u> 4	5							
	CA 20,06		20,06	20	Argila pouco arenosa (areia fina), solo residual de alteração de rocha granítica, mole a dura. Cor: Amarelo ferruginoso.	14.5	<u>30</u> 4	•	•	30 4	•				Ē		Ť	
-22,00					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484.2001 - Solo - Sondagem de Simples Reconhecimento com SPT.													

8.1.8 Furo de Sondagem Percussiva – SPT - SP2.1

6	2	A	Ja Pe	a co			RI	ESIST	ÊNCIA À						
COTA (m) (Escala 1:10	AVANÇO/ REVESTIMEN (m)	NÍVEL D'ÁGL (m)	PROFUNDIDA DA CAMAD (m)	PERFIL GEOLÓ / AMOSTRA	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)		PENETRAÇÃO		INICIAL	FINAL - N _{SPT}		N _s	GRÁFI PT (GOI	CO .PES) 30	40
	1			100		•			-	-					
	ц П	1.43		¥•)+		1 49			<u>1</u> 49		-		+	++	
	2.00	-			Areia fina pouco arenosa (areia média), argilosa, fofa. Cor: Cinza amarelado ferruginoso.	<u>р</u> 12	1 40		<u>1</u> 52	1 40	\vdash			++	+
			3,64	9		1 46		•	<u>1</u> 46		\vdash			+	
				04	Argila arenosa (areia fina), muito mole.	<u>Р</u> 15	1 15	1 19	1	2 34				+	
-5,00				. 05.	Cor: Cinza	1 30		1 15	1 30	1 15				+	+
			5,84	06		1 15	1 15	2 15	2	3				+	
				07	Areia fina a média, fofa a medianamente	2 15	<u>2</u> 15	<u>2</u> 15	4	4	╉		+	+	+
		5.0		08	compacta. Cor: Cinza.	2 15	<u>3</u> 15	<u>3</u> 15	5	6	ł		+	++	
		017 : 1,80m	9,38	09		<u>5</u> 15	<u>9</u> 15	<u>13</u> 15	14	22				+	
<u>-1</u> 0,00		W- 2702/3		10		<u>10</u> 15	<u>16</u> 15	<u>23</u> 15	26	39			Ĥ		
	CA	NA. INC NA. FIN		•	Areia fina, compacta a muito compacta. Cor:	<u>10</u> 15	<u>18</u> 15	<u>26</u> 15	28	44			+	\square	\mathbf{H}
				12	weye	11 15	<u>18</u> 15	<u>29</u> 15	29	47					
			13,50	13		8 15	12 15	17	20	29		11	Ź	$\left \right $	
						2 15	1 15	1 15	3	2	ſ		+	+	
<u>-1</u> 5,00				NR	Araiafina a mártia pouco amilosa fota a	1 15	1 15	1 15	2	2				+	
				16	pouco compacta. Cor: Cinza.	1 20	1 15	1 12	2 35	2 27	╉		+	+	
				17		2 15	<u>2</u> 15	<u>3</u> 15	4	5			+	+	
			17,90	19		2 15	4 15	6 15	6	10		+	+	+	+
				₹	Argila siltosa, média Cor: Verde	3 15	4 15	<u>5</u> 15	7	9		+		+	+
-20,00	20.00		20,00	Z20		2 15	3 15	4 15	5	7					
-20,64	20,04		20,64	/-//	Argila siltosa, média. Cor: Verde	2 15	3 15	4 15	5	7					
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM										
					NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.										

8.1.9 Furo de Sondagem Percussiva – SPT - SP2.2

6	2	4	A DE	000		RESIST	ÊNCIA À		
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD/ (m)	ERFIL GEOLÓC / AMOSTRAS	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctii-Visual)	ENSAIO DE PENET RAÇÃO GOLPES/PENET.)	INICIAL	FINAL - N _{SPT}	GRÁFICO N _{SPT} (GOLPES) 10 20 30 40
	↑			NR	Aterro composto de areia fina, siltosa. Cor: Vermelho.	• • •	•	•	
	n 1		0,98			1 47	47		
	2,00	2,02			Argila arenosa (areia muito fina a fina), muito mole.	P . 1		1	
	Î	_		[]]	Cor: Cinza.	1 1	2	1	
			3.82	/././		25 20 .	45	20	
			0,01	۲		15 15 15	8	5	
-5,00				05		6 10 15 15 15 15	16	25	
				05		6 8 8 15 15 15	14	16	
				â		7 9 10	16	19	
						15 15 15 6 7 8			
		2,12m 2,02m		NR.		15 15 15	13	15	
		02/2017		9		5 7 9 15 15 15	12	16	
-10,00	CA	NML: 07(1	Areia fina, fofa a muito compacta. Cor: Bege.	9 15 12 15 15 15	24	27	
		NA.IN NA.FI		1		8 10 13 15 15 15	18	23	
				ŵ		17 19 25	36	44	
				, e		15 15 15 15 18 20		-	
				13		15 15 15	33	38	
				۲		4 <u>3</u> <u>3</u> 15 <u>15</u> <u>15</u>	7	6	
-15,00				(15)		$\frac{2}{15}$ $\frac{3}{15}$ $\frac{3}{15}$	5	6	╞╋┥
				(16)		$\frac{2}{15}$ $\frac{2}{15}$ $\frac{2}{15}$	4	4	
						3 2 3	5		
				9		18 15 15 2 2 23	33		
-18,54	¥ 18,54		18,30 18,54	NR	Solo residual	15 15 15	4	25	
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.				

8.1.10 Furo de Sondagem Percussiva – SPT - SP2.3

(0	ę	Ą	B A	s G		RESIST	ÊNCIA À RAÇÃO		<u>`</u>				
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD. (m)	RFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE ENETRAÇÃO DLPES(PENET.)	INICIAL	INAL - N _{SPT}	,	GRÁF I _{SPT} (GO	ICO LPES)		
	-		-	H		4 <u>9</u>		4	10	20	30	40	
	Î Ţ		1,20	6 0	Aterro composto de areia fina a média, siltosa. Cor: Rosado.	1 1 15 30	- 2 45	- 1 30				\downarrow	
	¥ 2,00 ★	1,50			Argila pouco arenosa (areia fina), muito mole. Cor: Cinza escuro a amarelo ferruginoso.	P 1 15 31 -	1 46	1 31				+	
			2,64	/ 0)		$\frac{1}{30} - \frac{1}{15}$	1 30	<u>1</u> 15			+	+	
				je j	Areia fina a média, argilosa, fofa. Cor: Cinza escuro.	$\frac{1}{34} - \frac{1}{20}$	1 34	1 20		+	+	+	-
-5,00			4,86	19		$\frac{P}{20} \frac{1}{30}$ -	<u>1</u> 50	1 30			+	+	+
				/0/		P 45	<u>Р</u> 45				+	+	+
				Ø	Argila com conchas, muito mole. Cor: Cinza escuro.	P 30	<u>Р</u> 30				+	+	+
		.88m 50m)))		P 1 28 30 -	1 58	1 30			+	+	+
		03/2017	9.00	,00 .		P 48	<u>P</u> 48				+	+	+
-10,00	CA	INCIAL: OF			Arrilla nuurn arannsa (araia fina) muitn mola	P 53	<u>P</u> 53				+	+	+
		AN NA			Cor: Cinza escuro.	P 45	<u>Р</u> 45				+	+	+
			12,35	2		P 1 1 20 10 15	1 30	2 25			+	+	+
				13		$\frac{3}{15}$ $\frac{3}{15}$ $\frac{5}{15}$	6	8			+	+	-
				۲		7 <u>5</u> 7 15 15 15	12	12			+	+	+
-15,00				15	Areia fina, pouco compacta a compacta. Cor: Bege.	6 8 10 15 15 15	14	18		\mathbf{H}	+	+	+
				16		7 <u>9</u> 14 1515 15	16	23			+	+	+
	¥		17,64	Ø		7 <u>8</u> 13 1515 1515	15	21		+	+	+	+
-17,00	17,86		17,86		Solo residual.	1							
					IMPENETRÀVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.								
	•		•	•		· · · ·						<u> </u>	

8.1.11 Furo de Sondagem Percussiva – SPT - SP2.4D

6	<u>P</u>	A L	A DE	e co		RESISTÊN PENETRA	CIA À ÇÃO	· ·			
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NÍVEL D'ÁGL (m)	PROFUNDIDA DA CAMAD	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAIO DE PENETRAÇÃO (GOLPES/PENET)	FINAL - N _{SPT}	10	GRÁF SPT (GC	ICO DLPES)	40
	↑ 	1,44	1.00	0 0	Aterro com areia fina, siltosa, fofa. Cor: Bege alaranjado.	$\frac{1}{45}$ $\frac{1}{4}$	 1 15 -				
	2,00		1,00		Areia fina, argilosa, fofa. Cor: Cinza.	$\frac{P}{59}$ - $\frac{1}{5}$ $\frac{P}{54}$ - $\frac{1}{5}$	P				
-5,00			4,34		Argila arenosa (areia muito fina), muito mole. Cor: Cinza esverdeado.	$\frac{40}{46} = \frac{1}{4}$ $\frac{P}{49} = \frac{1}{4}$	9 16 9				
		3/2017 : 1,56m 2017 : 1,44m	6,85			P	P				
-10,00	CA	N A. FINAL: 02/03) 9 9 9	Argila, muito mole. Cor: Cinza escuro.	48 - 4 P - 69 - 6 P - 69 - 6	P				
				12		$\frac{P}{53} - \frac{1}{50} - \frac{1}{50}$	P 3 - 1 10 20				
-15,00			13,90	4 5 5	Areia fina, fofa a pouco compacta. Cor: Cinza.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3 4 <u>5</u> 33 4 4				
			16,65	19	Argila arenosa (areia muito fina), muito mole. Cor: Cinza esverdeado.	P 6	9 - ·				
-20,00	₹20,00		20,00	(NR) (19) (20)	Areia fina, pouco compacta a compacta. Cor: Bege.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 8 8 16 2 20				
-21,53	CA ↓ 21,69		21,69	2 2	Areia fina, pouco compacta a compacta. Cor: Bege.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 20 8 14				
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484.2001 - Solo - Sondagem de Simples Reconhecimento com SPT.						

8.1.12 Furo de Sondagem Percussiva – SPT - SP2.1

â	2	4	U A	aico		RESIST	TÊNCIA À		<u>_</u>				
COTA (m) (Escala 1:10	AVANÇO / EVESTIMEN (m)	NİVEL D'ÁGU (m)	ROFUNDIDA DA CAMAD/ (m)	RFIL GEOLÓG	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctii-Visual)	ENSAJO DE ENETRAÇÃO LPES/PENET.)	INICIAL	NAL - N _{SPT}		GRÁI N _{SPT} (GC	FICO DLPES))	
	Ľ.		•	B		- <u>e</u> 9		E	10	20	30	40	•
	Î	1.35	1,24		Aterro com silte arenoso (areia fina), fofo. Cor: Marrom.	1 1 20 32	- 2 52	- 1 32					
	2,00		2,40	02	Argila arenosa (areia fina), muito mole. Cor: Marrom.	<u>1</u> - <u>1</u> 30 - <u>1</u> 8	<u>1</u> 30	1					
				3	Areia fina a média, pouco argilosa, tota. Cor: Marrom.	P 1 8 40 -	<u>1</u> 48	<u>1</u> 40				_	
			3,80	(9)		1 · 1 30 · 20	<u>1</u> 30	1 20					
-5,00				19		P 46 · ·	<u>Р</u> 46	-					
				1 5		P 50	P 50	-					
				ø		P 58	<u>1</u> 30	-					
		.68m Xim		()()	Argila, muito mole. Cor: Cinza escuro.	P 52 · ·	<u>Р</u> 52	-					
		03/2017: 1		9		P	<u>Р</u> 50	-					+
-10,00	CA	NO.4L 030		0		<u>Р</u> 48	P 48	-					+
		NAI		(1)		P	<u>Р</u> 56	-					
			11,01	12		<u>р</u> 69	<u>Р</u> 69	-					
				13		P 60	<u>Р</u> 60	•					
				13	Argila arenosa (areia fina a média),muito mole a rija. Cor: Preto.	P - 1 30 - 20	1 30	<u>1</u> 20					
-15,00				15		2 <u>3</u> <u>5</u> 15 <u>15</u> <u>15</u>	5	8					+
			16,40	16		3 4 13 15 15 15	7	17		$\left \right $			
				10	Areia média a grossa, pouco argilosa, pouco compacta. Cor: Cinza escuro.	3 4 3 15 15 15	7	7					
	↓ ↓		18,15	/18/		2 5 18	7	23			\rightarrow	+	+
É :	18,55		18,55	11	Areia fina, argilosa, compacta. Cor: Marrom.								
-19,00					IMPENETRÄVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484.2001 - Solo - Sondagem de Simples Reconhecimento com SPT.								
		-							-			<u> </u>	

8.1.13 Furo de Sondagem Percussiva – SPT - SP2.6

(0	6	V I	DE	aico s		RESIST	ÊNCIA À		
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD (m)	PERFIL GEOLÓ / AMOSTRA	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctii-Visual)	ENSAIO DE PENETRAÇÃO (GOLPES/PENET.)	INICIAL	FINAL - N _{SPT}	GRAFICO N _{SPT} (GOLPES)
	Т Т Т	1,30	1.49	8	Aterro com silte pouco argiloso pouco arenoso (areia fina), muito mole. Cor: Ocre.	 <u>1</u> <u>1</u> <u>1</u> <u>15</u> <u>18</u>	2	- 2 33	
	2,00		2,55		Argila pouco arenosa (areia fina), muito mole. Cor: Cinza escuro.	$\frac{1}{30} - \frac{1}{20}$	<u>1</u> 30	<u>1</u> 20	
					Areia fina, pouco argilosa, fofa. Cor: Cinza escuro.	<u>1</u> <u>1</u> <u>1</u> 15 15 15	2	2	
-5.00			4,00		Areia fina a média pouco argilosa, fofa.	$\frac{1}{19}$ $\frac{1}{15}$ $\frac{1}{11}$	2 34	2 26	
			5,80		Cor: Cinza escuro.	20 15 10	35	25	
						30 24	30	24	
		1.84m 30m				P 1 -	48 1 55	30 1 40	
		01/03/2017 : 2/03/2017 : 1				P	P 50	-	
-10,00		TALINICIAL:		0		P 56 · ·	P 56		
	CA	~~		0		<u>Р</u>	P 45		
				12	Argila, muito mole a dura. Cor: Cinza escuro.	P 1 26 30	56	1 30	
						$\frac{p}{15}$ $\frac{1}{20}$ $\frac{1}{15}$ 6 7 13	35	35	
-15,00						15 15 15 5 6 10	13	20	
				6		15 15 15 <u>4 6 10</u> 15 15 15	10	16	
				0		<u>3 5 7</u> 15 15 15	8	12	
				18		<u>3</u> <u>4</u> <u>6</u> 15 15 15	7	10	
-20.00	¥		19,00	9	Areia fina, medianamente compacta a compacta. Cor: Bege.	4 7 11 15 15 15 5 8 12 15 15 15	11	18	
	1		20,00	NR	Areia fina, medianamente compacta a compacta.	5 8 12	13	20	
	CA ♥ 21,51		21,51	1	сог. веде. Areia fina a média, argilosa, com fragmentos de conchas, fofa a compacta. Cor: Cinza escuro.	15 15 15 2 2 30 15 15 10	4	32 25	
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM				
					NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.				

8.1.14 Furo de Sondagem Percussiva – SPT - SP2.7

6	2	V	A E	aico s		RESIST PENE	ÊNCIA À		
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÅGU (m)	PROFUNDIDA DA CAMAD. (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAJO DE PENETRAÇÃO (GOLPES/PENET.)	INICIAL	FINAL - N _{SPT}	GRĂFICO N _{SPT} (GOLPES) 10 20 30 40
	↑ 	1,51	1,58	-0 -0	Aterro com areia fina, siltosa, pouco compacto. Cor: Bege amarelado.	2 <u>3</u> 2 15 15 15	5	5	
	2,00		2,95		Argila siltosa, pouco arenosa (areia fina), muito mole. Cor: Marrom.	$\frac{1}{20}$ $\frac{1}{15}$ $\frac{1}{15}$	2 35	2	
			3,86		Areia fina a média, siltosa, fofa. Cor: Cinza escuro.	30 18	30	18	
-5,00			5.60		Areia fina, pouco argilosa, fofa. Cor: Cinza escuro.	15 15 15 1 1 1 20 15 10	2 2 35	2	
			3,00		Argila siltosa, muito mole. Cor: Cinza escuro.	$\frac{1}{30} \cdot \frac{1}{15}$	1 30 2	1 15 1	
	CA	,68m 51m	7,54 8,00		Areia fina a média, pouco argilosa, fofa. Cor: Cinza escuro.	<u>1</u> . <u>1</u> 30 . <u>20</u>	45 <u>1</u> 30	20 1 20	
		6/03/2017 : 1		()		1 1 15 30 -	2 45	1 30	
-10,00		A. INICIAL: 0			Argila, muito mole. Cor: Cinza escuro.	$\frac{1}{20}$ $\frac{1}{15}$ $\frac{1}{12}$	2 35	27	
	Ļ	zz	11,98			18 15 15 38	33	2	
-12,43	12,43		12,43		Areia fina, muito compacta. Cor: Cinza escuro.	15	15	-	
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA:				
					Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.				

8.1.15 Furo de Sondagem Percussiva – SPT - SP2.8

(0	6	¥,	DE A DE	s GCO				RI	ESIST	ÊNCIA A								
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NİVEL D'ÅGU (m)	PROFUNDIDA DA CAMAD. (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctii-Visual)		ENSAIO DE	PENETRAÇÃO		INICIAL	FINAL - N _{SPT}		N 10	GR І _{ЗРТ} (20	GOLI	O PES)	40	
	1		0,68		Aterro com areia fina a grossa, argiloso. Cor: Vermelho.			•		-	-							
	⊓ ↓	1.80			Argila arenosa (areia muito fina a fina), muito mole. Cor: Cinza esverdeado.	1	0	<u>1</u> 36	1	<u>1</u> 46	1 36						+	+
	2,00		2,30	02		1	5	1 15	2 15	2	3	1		+	+		+	+
				03		1	5	<u>2</u> 15	<u>3</u> 15	3	5	1			+		+	+
				04		1	2	2 15	<u>3</u> 15	4	5	+		+	+		+	+
-5,00				05	Areia fina a média, fofa a pouco compacta. Cor: Cinza amarelado ferruginoso.	1	1_5	1 15	2	2	3	1			_		+	
	CA			06		1	2 9	<u>1</u> 15	2 15	3 34	3				_		_	
			6,50	//			0		1 15	2 45	1 15			_	_		+	
					Argila arenosa (areia fina), muito mole a dura. Cor: Cinza escuro.	ł	5	1 20	1 15	2 35	2 35							
	Ļ	1.80m 1.80m	9.17				2	30		32	30							
-9,33	9,33	2012	9.33		Solo residual. Cor: Cinza esverdeado.	7'		0		23	•							
		N.A. INICIAL: 24/02/ N.A. FINAL: 24/02/2			IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.													

8.1.16 Furo de Sondagem Percussiva – SPT - SP2.9

6	ę	٩	A DE	aico		RESIST	TÊNCIA À				 	
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	NÍVEL D'ÁGU (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)	ENSAJO DE PENETRAÇÃO (GOLPES/PENET.)	INICIAL	FINAL - N _{SPT}	1	40		
E	L ↑		0,38		Aterro com areia fina a média, silto argilosa. Cor: Bege.		1	1.1				
	TI ↓ 2,00	1,54		6	Argila pouco arenosa (areia fina), muito mole. Cor: Marrom.	$\frac{1}{34} - \frac{1}{20}$	1 34	1 20				
	Î		2,35			15 15 15 <u>2</u> <u>1</u> <u>2</u> 19 15 15	2 34	3				
-5,00					Areia fina a média, pouco argilosa, fofa. Cor: Cinza escuro.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 35 2	27				
			5,84		Arnila arennea (areis fina a mártia), muito mole	$\frac{15}{40}$ $\frac{15}{20}$	<u>1</u> 40	1 20			+	
	CA		7,65		Cor: Cinza escuro.	1 1 36 24	1 36	1 24 1				
		03/03/2017 : 1,68m /03/2017 : 1,54m			Argila arenosa (areia muito fina a fina), muito mole. Cor: Cinza escuro.	30 20 P 1 21 30	<u>1</u> 51	20 _1 	~		+	
-10,00		LA FINAL: 03	9,98		Areia média, argilosa, com seixos, pouco compacta a medianamente compacta. Cor: Cinza escuro.	2 <u>5</u> <u>13</u> 15 15 15	7	18		\geq		
		22	12.80		Areia fina, argilosa, fofa. Cor: Cinza escuro.	$\frac{P}{51}$	- <u>1</u> 59	- 1 30			+	
-13,54	13,54		13,54	NR	Areia grossa a muito grossa, pouco argilosa, muito compacta. Cor: Cinza escuro.	<u>34</u>	<u>34</u> 0	•			+	+
					LIMITE DA SONDAGEM NOTA: Impenetrável em pedreguihos. Impossível de prosseguir na lavagem.							

8.1.17 Furo de Sondagem Percussiva – SPT - SP2.10

ê	2	4	A E	aico				RE	ESIST	ÊNCIA À								
COTA (m) (Escala 1:10	AVANÇO / REVESTIMEN (m)	(m) (m)	PROFUNDIDA DA CAMAD/ (m)	PERFIL GEOLÓ	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctil-Visual)				ENSAIO DE PENETRAÇÃO (GOLPES/PENET.)		FINAL - N _{SPT}	•	GRĂFICO N _{SPT} (GOLPE 10 20 30) ES)	40	
	Î Î		0,72		Aterro com areia fina a grossa, argiloso. Cor: Vermelho		1	1										
	п Ц	1.40		. 01.			P 10	1 35	-	45 45	1 35			+		+	+	-
	200 Å	-		.02	Argila arenosa (areia fina), muito mole. Cor: Cinza esverdeado		<u>р</u> 10	1 20	1 15	1 30	2 35			+		+	┢	
			3.00								2						+	
				(3	Arela fina a média, pouco argilosa, fofa. Cor: Cinza escuro.		1 20	1 15	1 10	2 35	2 25						+	
-5,00			4,90	.05			1 30	•	1 20	<u>1</u> 30	1 20	-		+		-	+	\vdash
							1 25	1 23		_ <u>1</u> 25	1 23	-		-		+	┢	$\left \right $
				07			1 15	$\frac{1}{40}$		2 55	40	-				-	+	
					Argila pouco arenosa (areia fina), muito mole		1 30		1 20	- <u>1</u> 30	1 20	-				-	+	\square
		017:1,84m 17:1,40m		0	Cor: Cinza escuro.		1 20	$\frac{1}{34}$		2 54	1 34	-				+	+	
<u>-1</u> 0,00		L: 24/02/20		1			<u>р</u> 18	1 40		<u>1</u> 58	1 40					-	+	
		NA.INCK NA. FINU					1 30		<u>1</u> 15	<u>1</u> 30	1 15	Ļ				+	+	\square
			11,78	(12)	Areia fina a média, medianamente compacta a compacta. Cor: Cinza		4	<u>13</u> 15	<u>21</u> 15	17	34					-	+	$\left \right $
-12,86	12.86		12.70 12,86		Solo residual com fragmentos.	_												
					IMPENETRÁVEL AO TRÉPANO DE LAVAGEM NOTA: Furo paralisado conforme descrito no item 6.4.3.3 da norma NBR6484:2001 - Solo - Sondagem de Simples Reconhecimento com SPT.													

8.1.18 Furo de Sondagem Percussiva – SPT - SP2.11

	_		<u>ه</u>	à		RESIS											
£Ê		4GUA	DADE DADE AS (m	LÓGIC			TRAÇAS	, 	SOLO - N _{SPT} (GOLPES))	2	DE	E E
OTA cala 1	VANG (m)	(m)	UNDI	06EOI	(Táctil-Visual)	NO DE RAÇĂ	CIAL	×.					40	,	ğ	TERA	URAU
<u>ه</u>	REVI	ŃŅ	MAN	AN		PENEL	Ē	FINAL	ROCH	1A-%I n 4	DE R	ECUP 60	PERA	ÇAO	-	AL	FRAT
<u> </u>	•			E.		- @	-	-			Ě	-	Ť	, 	<u> </u>		-
	τi.																
	1,50																
Ē.	I î I																
E																	
Ē					Lavagem direta a pedido do cliente.												
Ē.	Ĭ																
Ē																	
5,00																	
Ē	I↓																
Ē	6,20		6,20 -	11		-											
Ē.				6	Argila arenosa (areia fina a média). Cor: Marrom,	$\frac{1}{15}$ $\frac{2}{15}$ $\frac{2}{15}$	3	4				_					
E			7,20 -		Areia fina a grossa, fota. Cor: Cinza.	- 15 10 10											
Ē			7,80	۸ŵ۶	Cascalheiro composto por seixos com composiç e granulometria diversas.	$\frac{7}{15}$ $\frac{6}{15}$ $\frac{5}{15}$	13	11	H	7	\vdash	+	+	-			
Ē			8,35		Areia media a grossa, medianamente compacta. Cor: Cinza.	1 1 2			K								
Ē			9,00	r:1.	Argita arenosa (areia fina), muito mole a mle. Cor: Cinza.	15 15 15	2	3	V								
-10,00			3,50	$\left(NR \right)$		$\frac{2}{15}$ $\frac{2}{15}$ $\frac{2}{15}$ $\frac{2}{15}$	4	4	4			_	\square	_			
Ē	NW				Areia média, fofa a pouco compacta.	2											
Ē				(NR)		15 15 15	4	5	Ň			+			1		
Ē.			11,50	l_{0}	Areia media, argilosa, medianamente compacta.	4 6 7	10	13				_					
Ē				11	Cor: Cinza.	10 10 10			1								
Ē			12,75	_9_		$\frac{2}{20}$ $\frac{1}{10}$ $\frac{1}{15}$	3	25	H		\vdash	+	+				
Ē.				/=/	Argila siltosa, muito mole a mole. Cor: Cinza escuro.	1 1 2		3									
Ē				2=7		15 15 20	1 ×	35	\mathbb{N}								
-15,00			15,00 -	15	Ander alle annen fande fank mele amfele	1 2 6 15 15 15	3	8	H		\vdash	+	+	-			
Ē				11	Argia sito-arenosa (areia fina), mole a media. Cor: Marrom amarelado.	4 2 6											
Ē			16,00 -	/"/		15 15 15	6	8	1						1		
Ē.				NR	Areia fina argiosa, pouco compacta a compacta. Cor: Marrom.	<u>5</u> <u>7</u> <u>15</u> 15 15 15	12	22				_		_			
Ē	יוא		17,54	V V V 1	Diabásio, granulometria fina microcristalino, sã,						\vdash	+	+	-	-		
Ē				vvv	pouco fraturada e muito coerente. Cor: Cinza escuro. , Granito, granulometria média a grossa, inequigranular,	-			20%						0%	A1	F1
Ē.			10.04 -	VV V V	fenocristais evédricos de plagiociásio em alteração, cristais anédricos de quarto disseminados e cristais de biotita atorcelos crisetados interación di um interac												
E	↓		13,04	+++	paralelo ao elio da manchra, medianamente alterada, muito fraturada a extremamente traturada e pouco				26%						15%	A3	F3 - F4
20,00	anna www.k		20.00	* * * *	coerente. Cor: Marrom acinzentado com pontos brancos. Granito, granulometria média a grossa, inequigranular,			-	2024		_	+	+	+	150	4.7	F2 . F4
-20,54	20,54		20,54 -		tenocristais euedricos de plagioclásio em alteração, oristais anédricos de quartzo disseminados e oristais de biotita alterados, orientados indicando fluxo (greo				20%		+	+	$\left \right $	+	10%	A3	23-14
Ē) paratelo ao eixo da manobra, medianamente atterada, muito tratunada a extremamente fratunada e pouco (seerente. Cor: Marrom acinzentado com portos brancos.												
Ē.					LIMITE DE SONDAGEM ACORDADO COM O CLIENTE.	1											
E																	
E_	1				l	I		I				I					

8.1.19 Furo de Sondagem Mista – SM01

									_											
COTA (m) (Escala 1:100)	AVANÇO / REVESTIMENTO (m)	NİVEL D'Á GUA (m)	PROF UNDIDAD ES CAMADA e MANOBRAS (m)	ERFIL GEOLÓGICO / AMOSTRAS	DESCRIÇÃO GEOLÓGICA DO MATERIAL (Táctii-Visual)	ENSAIO DE	PENETRAÇÃO	IST	ÊNCIA / RAÇÃO TVIDINI	FNAL - Nar	SOLO - N _{SPT} (GOLPES) 10 20 30 40 HOCHA - % DE RECUPERAÇÃO 20 40 60 80						ROD (%)	GRAU DE ALTERAÇÃO	GRAU DE FRATURAMENTO	
				G.	Lavagem direta a pedido do cliente. Ver SP2.10		50													
-15.00	Î		14,80_	V V V V V V V V V	Diabaio, granuborstria fina microcristatino, at a medianarente alterada, pouzo faturata a finagmentada e multo comente a pouzo coerente. Cor: Cinas escura a branco arteretado. Diabaisio, granutometria fina microcristatino, medianamente elevada, finagmentada e pouzo coerente. Cor: Diraco amaretado.						57%							37%	A1-A3	F1-F5
	NW		15,50	+++++++++++++++++++++++++++++++++++++++	Granito, granulometría média a grossa, inequigranular, fenocristas exidéricos de plagioclásio e cristais anééricos de quartos, sã a medianametra albrada, traturada a fragmentadae pouco coererte a muito coerente . Cor: Ciruza escuro com pontos brancos a branco amarelado						27%					ľ		33%	A1-A3 A1	F2 F5
			17,00	200 240	Cascalheiro de silica amorfa, sã, fragmentada e coerente. Cor: Cores variadas.						9%	Γ						0%	A1	F5
-20,00	20.00		20.00	19 NR	Argila sitto-arenosa (areia muito fina), média a rija. Cor: Marrom.	4 15 5 15	5 1 15 1 6 1 15 1	5 5 7	9	10 13								-		
-24.30	NW 24.30		22,00-		Argila silto-arenoso (areia muito fina), média a rija. Cor: Marrom. Argila silto-arenoso (areia fina), pouco micácea, solo residual de ateração de rocha granifica, rija a dura. Cor: Marrom . LIMITE DE SONDAGEM ACORDADO COM O CLIENTE.	5 15 7 15 9 15 18 15	6 8 115 1 15 1 19 2 15 1 15 1 15 1	20 127 C3 127 C3 120	11 15 28 <u>53</u> 21	14 20 42 <u>35</u> 6										

8.1.20 Furo de Sondagem Mista – SM02

8.1.21 Furo de Sondagem Mista – SM03

8.2 PROJETOS DE FUNDAÇÃO.

Devido ao elevado número de projetos, será apresentado aqui apenas um documento tipo, sendo este a planta de estacas da estrutura Tricktow Norte.

8.3 BOLETIM DE CRAVAÇÃO.

Devido ao elevado número de boletins, será apresentado aqui apenas um documento tipo, sendo este um diagrama de cravação da estaca estacas 384 da estrutura Tricktow Norte.

1	LAGRAMA D	E CRA	ração	1	COM	POSIÇÃ	0	2	COMP.	CRAVA	DO	6	20	2L	1	1	30	ieçao	0
PROF.	NÚMERO	PROF.	NÚMERO	6	+127	IK	_	A	6.1			+r	- 2/	2-1		-	-	TT	-
PONTA	GOLPES	PONTA	GOLPES			1.	+	T	1	-		+		_		1	-		
0 - 1	6	22 - 23	64	-	M	all	14	4	Ja	Mil.	ad	0	P	w	r	×q	41	\square	
1-2	A	23 - 24	63				1												_
2-3	8	24 - 25	48	-			-	-		+		+				+	-	\square	
3-4	9	25 - 26	93		T	M													_
4 - 5	13	26 - 27	-125	-	+		-	+		+									
5-6	15	27 - 28		F								-		_		-	-	\vdash	+
6 - 7	19	28 - 29												n'					-
7 - 8	21	29 - 30		-	++		-	-	-	-		0	0	2		A	4	\vdash	-
8 - 9	22	30 - 31										X	4	2	CO	Éa			_
9 - 10	a.6	31 - 32					-									+			
10 - 11	26	32 - 33		-								-		-	-	+	-		-
11 - 12	SI	33 - 34					•										-		
12 - 13	33	34 - 35														+			
13 - 14	36	35 - 36								_		-		_		-	-		
14 - 15	37	36 - 37	•																
15 - 16	.41	N	EGAS			+	-						1	,			-		-
16 - 17	41	ALTURA	NEGA P/	F			\ f		11		11	1				-	4		-
17 - 18	43	500	0.30		-	-!	11	r.	1		10	N			0	-	013		-
18 - 19	62 1	500	2512				-	T	-	F	-	-		_		1		-	-
19 - 20	55	500	alice	E															
20 - 21	55	40	Diffor																
21 - 22	53	20																	